Question

A computer hard disk starts from rest, then speeds up with an angular acceleration of 210...

A computer hard disk starts from rest, then speeds up with an angular acceleration of 210 rad/ s^2 for 5.0 s until it reaches its final angular speed. It rotates for another 6.0 s at that constant angular speed. It then slows down and comes to rest in 9.0 s.
A. determine the angular speed of the disk 5.0 s after start up. Express your answer in rad/s and rpm (rev/min).
B. determine the angular speed of the disk 11.0 s after start up.
C. determine the angular acceleration of the disk when it was slowing down.
D. determine the number of revolutions made by the disk in the 20 s it was spinning.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration....
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 11.0 rev/s; 35.0 revolutions later, its angular speed is 21.0 rev/s. Calculate (a) the angular acceleration (rev/s2), (b) the time required to complete the 35.0 revolutions, (c) the time required to reach the 11.0 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the 11.0 rev/s angular speed.
1. A wheel starts from rest and has an angular acceleration of 6.00 rad/s2 . When...
1. A wheel starts from rest and has an angular acceleration of 6.00 rad/s2 . When it has made 3.00 rev its angular velocity in rad/s is: 2. A circular disk of radius 1.00 m rotates, starting from rest, with a constant angular acceleration. What is the centripetal acceleration of a point on the edge of the disk at the instant that its angular speed is 2.50 rev/s?
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 2.00...
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 2.00 s, it rotates 44.3 rad. During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 2.00 s? (d) With the angular acceleration unchanged, through what additional angle (rad) will the disk turn during the next 2.00 s?
A centrifuge takes 100 s to spin up with constant angular acceleration (α) from rest to...
A centrifuge takes 100 s to spin up with constant angular acceleration (α) from rest to its final angular speed of 1,875 (rad/s). What is the angular acceleration (in rad/s2) of the centrifuge as it spins up? (Hint: use relationship between angular velocity and angular acceleration)             (ii)       How many revolutions does the centrifuge make as it goes from rest to its final                         angular speed? (Hint: use relationship between angular displacement and                         angular acceleration, and noting that one revolution = 2 rads)...
A Disk Rotates A disk rotates about its central axis starting from rest and accelerates with...
A Disk Rotates A disk rotates about its central axis starting from rest and accelerates with constant rotational acceleration. At one time it is rotating at 11 rev/s. Then 60 revolutions later, its rotational speed is 16 rev/s. (a) Calculate the rotational acceleration. ___rev/s2 (b) Calculate the time required to complete the 60 revolutions mentioned. ___s (c) Calculate the time required to attain the 11 rev/s rotational speed. ___s (d) Calculate the number of revolutions from rest until the time...
A wheel beginning at 25 rpm rotates with an angular acceleration of 4.2 rad/s2. After 5.0...
A wheel beginning at 25 rpm rotates with an angular acceleration of 4.2 rad/s2. After 5.0 seconds, it slows to rest over a time of 20 seconds a)What is the average angular velocity of the wheel b)What is the average speed of a point on the outside edge of the wheel if the radius of the wheel is 0.34 m?
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has...
A .13 kg disk is rotating at an angular speed of 57 rad/s. The disk has a radius of .25m. The disk speeds up for 3 s. After the 3 s have passed, the edge of the disk is under a centripetal forxe of 313.13 N. What is the centripetal acceleration of the disk at this time? What is the final angular velocity of the disk after the 3 s? What is the angular acceleration during the 3 s interval...
A compact disk, which has a diameter of 12.0 cm, speeds up uniformly from zero to...
A compact disk, which has a diameter of 12.0 cm, speeds up uniformly from zero to 4.20 rev/s in 2.90s. (A) What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 2.00 rev/s ? (B) What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 3.00 rev/s?
A 44.0-cm diameter disk rotates with a constant angular acceleration of 3.00 rad/s2. It starts from...
A 44.0-cm diameter disk rotates with a constant angular acceleration of 3.00 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.48 s, find the angular speed of the wheel. rad/s (b) At t = 2.48 s, find the magnitude of the linear velocity...
PRACTICE IT A wheel rotates with a constant angular acceleration of 3.25 rad/s2. Assume the angular...
PRACTICE IT A wheel rotates with a constant angular acceleration of 3.25 rad/s2. Assume the angular speed of the wheel is 2.20 rad/s at ti = 0. (a) Through what angle does the wheel rotate between t = 0 and t = 2.00 s? Give your answer in radians and revolutions. ___________ rad ___________ rev (b) What is the angular speed of the wheel at t = 2.00 s? ___________rad/s (c) What angular displacement (in revolutions) results while the angular...