Question

A 25.0-g glass tumbler contains 200 mL of water at 24.0ºC. If two 15.0-g ice cubes,...

A 25.0-g glass tumbler contains 200 mL of water at 24.0ºC. If two 15.0-g ice cubes, each at a temperature of –3.00ºC, are dropped into the tumbler, what is the final temperature of the drink? Neglect any heat transfer between the tumbler and the room. (Specific heat of water and ice are 4.186 kJ/(kg K) and 2.05 kJ/(kg K), respectively. The latent heat of fusion of water is 333.5 kJ/kg. The specific heat of glass is 0.840 kJ/(kg K ). 1mL = 1 cm3 and the density of water is 1000 kg/m3 )

Homework Answers

Answer #1

Final temperature is 16.7 °C

pls do upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 25 g glass tumbler contains 310 mL of water at 24°C. If two 19 g...
A 25 g glass tumbler contains 310 mL of water at 24°C. If two 19 g ice cubes each at a temperature of -3°C are dropped into the tumbler, what is the final temperature of the drink? Neglect thermal conduction between the tumbler and the room.
A 25 g glass tumbler contains 360 mL of water at 24°C. If two 20 g...
A 25 g glass tumbler contains 360 mL of water at 24°C. If two 20 g ice cubes each at a temperature of-3°C are dropped into the tumbler, what is the final temperature of the drink? Neglect thermal conduction between the tumbler and the room
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0...
Two 20.0-g ice cubes at –18.0 °C are placed into 245 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. Please show work. Heat capacity of H20(s): 37.7 J/(mol x K) Heat capacity of H20(l): 75.3 J/(mol x K) Enthalpy of fusion of H20: 6.01 kJ/mol
Two 20.0-g ice cubes at –15.0 °C are placed into 225 g of water at 25.0...
Two 20.0-g ice cubes at –15.0 °C are placed into 225 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –15.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –15.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
Two 20.0-g ice cubes at –15.0 °C are placed into 265 g of water at 25.0...
Two 20.0-g ice cubes at –15.0 °C are placed into 265 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts.
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0 degreesC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in degreesC with 3 significant figures. Specific heat of ice: 2.090 J/(g∙ oC) Specific heat of water: 4.186 J/(g∙ oC) Latent heat of fusion for water:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT