Question

Consider a Li++ ion as described by the Bohr model. (a) At some other time, the...

Consider a Li++ ion as described by the Bohr model.
(a) At some other time, the electron in n=4 state. What possible wavelength of radiation emitted by this atom? Write the algebraic expression(s) and draw the diagram to illustrate the transitions.
(b) What is the ground state energy of this system in eV? Write the expression and evaluate it. What value of the quantum number n does this correspond to?
(c) Now assume the electron is in the n=1 state. At room temperature and without any other sources of energy, discuss how likely the electron is to transition to the n=2 state. Write an expression for the fraction of Li ions in equilibrium at room temperature that will have an electron in the n=2 state compared to those with the electron in n=1.
(d) Do you think it would be important to do the wave treatment of the nucleus of the Li ion to get an accurate description of the physics or can we treat is as a particle? Why or why not?

Homework Answers

Answer #1

a) The energy of nth Bohr orbit is given by,

for Lithium, Z = 3

and the wavelength of the corresponding energy transition

where, n>m

for this case, n = 4.

So, the possible values of m are 1,2,3.

put hc =1240 eV/nm

This expression will the wavelength in nanometer, for m = 1,2,3.

for m = 1

for m = 2

for m = 3

(all above wavelengths are in nanometer)

These are possible wavelengths.

b) For ground-state energy n = 1

Z = 3 for Li

c)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a positive...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a...
5a) Positronium is a bound state of an electron and a positron. What is the energy...
5a) Positronium is a bound state of an electron and a positron. What is the energy of the photon emitted in transitions of positronium from the first excited state to the ground state? (A) 1.7 eV , (B) 5.1 eV , (C) 6.8 eV , (D) 13.6 eV, (E) 20.4 eV 5b) A new hydrogen-like atom is discovered where the particle orbiting the proton has mass 2me and charge 2e, where me and e are the mass and charge of...
Astronomers use the line emission from the quantum state n = 3 to n = 2...
Astronomers use the line emission from the quantum state n = 3 to n = 2 to probe ionized hydrogen gas – that is, hydrogen gas stripped of its electron. In ionization equilibrium, a balance is established between the process of ionization and its reverse, recombination, in which a free electron e − and proton p recombine to form neutral atomic hydrogen H, releasing one or more photons γ : e − + p ↔ H + γ The recombination...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the...
Learning Outcomes (Unit 2) Perform quantitative calculations based on the relationship between wavelength, energy, and the speed of light. Identify and rank the different types of radiation which comprise the electromagnetic spectrum. Explain why classical mechanics doesn't describe electromagnetic radiation. Describe the photoelectric effect and relate the energy and/or intensity of the photons to the work function and kinetic energy of the ejected electrons. Explain the origin of atomic and emission spectra and relate these spectra to discrete energy levels....
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...