Question

A small object is placed 20cm from the first of a train of three lenses with...

A small object is placed 20cm from the first of a train of three lenses with focal length, in order, of 10,15 and 20cm. the first two lenses are separated by 30 cm and the last two by 20 cm. Consider the case when the first and last lenses are negative. Answer the following

1-calculate the position of the object and its magnification after the first lens? and draw the detailed ray diagram?

2- calculate the position of the object and its magnification after the second lens? and draw the detailed ray diagram?

3- calculate the position of the object and its magnification after the third lens? and draw the detailed ray digram?

  

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An optical system consists of two lenses separated by 35 cm – first is converging with...
An optical system consists of two lenses separated by 35 cm – first is converging with focal length 10 cm and the second is diverging with focal length 15 cm. An object is 20 cm to the left of the first lens. Find the position of the final image using both a ray diagram and the thin-lens equation. Is the image real or virtual? Erect or inverted? What is the overall magnification of the image?
Two converging lenses, each having a focal length equal to 10.7 cm, are separated by 38...
Two converging lenses, each having a focal length equal to 10.7 cm, are separated by 38 cm. An object is 21.4 cm to the left of the first lens. (a) Find the position of the final image using both a ray diagram and the thin-lens equation. cm to the right of the object (c) What is the overall lateral magnification?
An object 8 cm high is placed 12 cm to the left of a converging lens...
An object 8 cm high is placed 12 cm to the left of a converging lens of focal length 8 cm. A second converging lens of focal length 6 cm is placed 36 cm to the right of the first lens. Both lenses have the same optical axis. Find the position, size and orientation of the image produced by the two lenses in combination. Confirm the validity of your result by drawing a ray-tracing diagram.
An object 6 cm high is placed 12 cm in front of a 4 cm focal...
An object 6 cm high is placed 12 cm in front of a 4 cm focal length convex lens. (a) Draw a ray diagram to produce an image. (b) Calculate the image location and magnification using the lens equation. (c) How close is your image position and height to your calculated value (% difference)?
A converging lens of focal length f1 = +22.5 cm is placed at a distance d...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d = 60.0 cm to the left of a diverging lens of focal length f2 = −30.0 cm. An object is placed on the common optical axis of the two lenses with its base 45.0 cm to the left of the converging lens. (The thin-lens approximation may be assumed to hold.) (a) Calculate the location of the final image and its overall magnification with respect...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...
Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging...
Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging lens with a focal length of 10.0 cm while the seconds lens is a diverging lends with a focal length of 14.0. If an object is placed 9.0 cm to the left of the converging lens, determine the magnification of the two lenses combined.
Two converging lenses are placed 15 cm apart. The lens A (on the left) has a...
Two converging lenses are placed 15 cm apart. The lens A (on the left) has a focal length of 5 cm, and lens B (on the right) has a focal length of 4 cm. An object is placed 8 cm to the left of lens A. Draw the scenario and confirm your findings using the equations to find:          a) the final image distance          b) the magnification          c) is the image real or virtual?
An object is placed 100 cm in front of a diverging lens of focal length -25...
An object is placed 100 cm in front of a diverging lens of focal length -25 cm. A converging lens with a focal length of magnitude 32.7 cm is placed 30 cm past the first lens. What is the lateral magnification of this system of lenses?
an object is placed 10 cm from a converging lens with a focal length of magnitude...
an object is placed 10 cm from a converging lens with a focal length of magnitude 20cm. what is the magnification?