Question

1. How does heat transfer in the ice water? From where does the heat transfer? 2....

1. How does heat transfer in the ice water? From where does the heat transfer?

2. How does heat transfer when you mix hot and cold water? From where does the heat come from?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel flow heat exchanger is used to transfer heat from hot water at 80oC, flowing...
A parallel flow heat exchanger is used to transfer heat from hot water at 80oC, flowing at 5 L/min to cold water at 15oC which is flowing at a rate of 15 L/min. The overall heat transfer coefficient is 2000 W/m2oC and the area is 0.2m2. Calculate the heat transfer rate, the outlet temperature of the cold water.
Heat transfer from solid to liquid: 1. An experiment is being performed. 500g of cold water...
Heat transfer from solid to liquid: 1. An experiment is being performed. 500g of cold water is poured into a calorimeter. The temperature is measured to be 13.2 degrees celsius. Then, 300 mL of hot water is poured into a beaker and a 500g metal mass or aluminum bar is placed in it. The temperature of the hot water/metal mass is 64.5 degrees celsius. The block is moved from the hot water into the cold water. The final temperature is...
5. Heat Transfer: Calculate the heat transferred by the faucet water to the ice water in...
5. Heat Transfer: Calculate the heat transferred by the faucet water to the ice water in #4 above: (a) Use the following equation: Where, Cwater is the specific heat capacity of water = 1 cal/(gram oC) mwater is the mass the faucet water added in #4 (b) ΔT is the temperature change of the water [(#2(a) - #4(b)) temperatures] Calculation: SHOW WORK Result: Q = ____________________ cal Convert the value of Q into joules: (1 calorie = 4.2 joules) Q...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s,...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 80ºC at a rate of 2 kg/s. Assuming the specific heat of water to remain constant at Cp=4.18 kJ/(kg.ºC), determine the maximum heat transfer rate and the outlet temperatures of the cold and the hot water streams.
A heat engine that has maximum efficiency starts working by using 1 kg of water with...
A heat engine that has maximum efficiency starts working by using 1 kg of water with initial temperature Ti = 373K as a hot reservoir, and 1 kg of ice at T0 = 273K as its cold reservoir. As the engine goes through cycles, the water cools, and the ice melts. At some point, all of the ice will be melted. (a) What is the temperature of the water reservoir at that time? (b) What is the maximal amount of...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In 5 minutes of operation of the engine, the heat rejected by the engine melts a mass of ice equal to 4.05×10−2 kg . Throughout this problem use Lf=3.34×105J/kg for the heat of fusion for water. A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling...
1. How much heat is required to change a 32.3 g ice cube from ice at...
1. How much heat is required to change a 32.3 g ice cube from ice at -10.6°C to water at 47°C? (if necessary, use cice=2090 J/kg°C and csteam= 2010 J/kg°C) 2. How much heat is required to change a 32.3 g ice cube from ice at -10.6°C to steam at 111°C?
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water...
A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a large tub of ice and water. In 5 minutes of operation of the engine, the heat rejected by the engine melts a mass of ice equal to 4.80×10−2 kg . Throughout this problem use Lf=3.34×105J/kg for the heat of fusion for water. Part A During this time, how much work W is performed by the engine? Will...
What would be an acceptable assumption of the over all heat transfer coefficient (U) for a...
What would be an acceptable assumption of the over all heat transfer coefficient (U) for a shell and tube heat exchanger with air as the hot fluid (90psi @250 deg F) and water as the cold fluid?
Jack is operating a tubular, water-water heat exchanger when suddenly, the valve controlling the flow rate...
Jack is operating a tubular, water-water heat exchanger when suddenly, the valve controlling the flow rate of the hot-water stream becomes stuck and he is now unable to adjust/control the flow rate of the hot-water stream. Additionally, the tube providing the hot water has become partially clogged, drastically reducing the flow rate of hot water entering the exchanger. How could you adjust the heat exchanger apparatus to maintain the same outlet temperature of the cold-water stream as before the incident?...