Question

Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s,...

Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 80ºC at a rate of 2 kg/s. Assuming the specific heat of water to remain constant at Cp=4.18 kJ/(kg.ºC), determine the maximum heat transfer rate and the outlet temperatures of the cold and the hot water streams.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin-walled cross-flow heat exchanger is used to heat a petrochemical whose specific heat is 1800...
A thin-walled cross-flow heat exchanger is used to heat a petrochemical whose specific heat is 1800 J (kg K)-1 with hot water (Cp = 4180 J (kg K)-1). The petrochemical enters the heat exchanger at 20oC at a rate of 3.7 kg s-1, whilst the water stream enters at 110oC at a rate of 2.5 kg s-1. The heat transfer surface area of the heat exchanger is 4.8 m2 and the overall heat transfer coefficient is 940.30 W m-2K-1. Determine...
Hot water enters a counter-flow double-pipe heat exchanger at 180F with a velocity of 5 ft/s....
Hot water enters a counter-flow double-pipe heat exchanger at 180F with a velocity of 5 ft/s. Cold water at 80F flows at 3 ft/s in the outer section of the exchanger. The diameter of the inner pipe is 1 inch, the pipe wall thickness is 1/8", and the outer pipe diameter is 2 inches. The overall heat transfer coefficient times area per unit length UA/L = 150 Btu/hr-ft-F. If the exchanger is 16 feet long, what is the exit temperature...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Milk enters a heat exchanger at 200C and is heated to 750C using hot water at...
Milk enters a heat exchanger at 200C and is heated to 750C using hot water at a temperature of 900C. 1) If exit temperature of water is 800C, assume parallel flow and determine the log mean temperature difference between water and milk.   2) assume countercurrent flow and determine the log mean temperature difference between water and milk. 3)assume countercurrent flow and determine the overall heat transfer coefficient of heat exchanger (based on inside diameter). Assume specific heat of water as...
Jack is operating a tubular, water-water heat exchanger when suddenly, the valve controlling the flow rate...
Jack is operating a tubular, water-water heat exchanger when suddenly, the valve controlling the flow rate of the hot-water stream becomes stuck and he is now unable to adjust/control the flow rate of the hot-water stream. Additionally, the tube providing the hot water has become partially clogged, drastically reducing the flow rate of hot water entering the exchanger. How could you adjust the heat exchanger apparatus to maintain the same outlet temperature of the cold-water stream as before the incident?...
In the heat exchanger, in theory, as the flow rate of the cold-water stream increases, the...
In the heat exchanger, in theory, as the flow rate of the cold-water stream increases, the outlet temperature of the cold-water stream _________ . Select one (1) of the following: Stays the same Decreases Increases
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp = 2200 j/kg*K) from 150 ℃ to 30 ℃ at a rate of 2.1 kg/s by water (cp= 4180 J/kg*K) that enters at 20 ℃ at a rate of 1.2 kg/s. The diameter of the tube is 2.5 cm, and its length is 10 m. Using Excel (a) Determine the overall heat transfer coefficient of this heat exchanger. (b) Investigate the effects of oil...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT