Question

(a) What is the equation describing the motion of a mass on the end of a...

(a)

What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8 cm from equilibrium and then released from rest, and whose period is 0.66 s? Assume that the displacement at the start of the motion is positive.

Express your answer in terms of t using two significant figures.

(b)

What will be its displacement after 1.9 s ?

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass is performing simple harmonic motion. You may assume that there are no significant frictional...
A mass is performing simple harmonic motion. You may assume that there are no significant frictional forces in this problem (the motion is undamped). The maximum speed of the mass during the motion is 4.6 m/s . The amplitude of the motion is 25 cm Part A.)   What is ? , the angular frequency of this motion? Express your answer using two significant figures. Part B.)   What is T? , the period of this motion?     Express your answer using two...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 23.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0...
A) A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 8.0 cm. If a timer is started when its displacement from equilibrium is a maximum (hence x = 8 cm when t = 0), what is the displacement of the mass when t = 3.7 s? B) A mass of 4.0 kg, resting on a horizontal, frictionless surface, is attached on the right to a horizontal spring with spring...
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position....
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position. (a.) What is the spring constant? = 245 N/m (b.) The block is removed, and a 0.500 kg mass is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation? =.284 sec (c.) Write the unique equation of motion y(t) for the motion of the mass in part (b), assuming the mass was initially pulled...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 15.0 cm from equilibrium is at t = 0.200 s. What is the block's period of oscillation? _______ s b) A block with a...
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.30 N is applied. A 0.520-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (f)...
A 360-g block is connected to a light spring for which the force constant is 6.00...
A 360-g block is connected to a light spring for which the force constant is 6.00 N/m is free to oscillate vertically in air. The block is displaced 2.00 cm from equilibrium and released from rest, at t = 0, x = – A. Neglect the effects of all types of resistance. Calculate the: frequency of the motion. periodic time of the motion.                                                                     maximum acceleration. maximum force acting on the body.                                                               maximum velocity.                                                                           velocity when displacement is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT