Question

a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....

a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = π/12, π/8, π/6, π/4, and 9π/32 s. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, and the entire system is immersed in a liquid that imparts a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?)...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
A mass weighing 10 lb stretches a spring 1/4 foot. This mass is removed and replaced...
A mass weighing 10 lb stretches a spring 1/4 foot. This mass is removed and replaced with a mass of 1.6 slugs, which is initially released from a point 1/3 foot above the equilibrium position with a downward velocity of 3/4 ft/s. Find the first time the mass will be positioned half of the amplitude below the equilibrium.
A mass weighing 20 N stretches a spring 6 m. The mass is initially released from...
A mass weighing 20 N stretches a spring 6 m. The mass is initially released from rest from a point 8 m below the equilibrium position. (a) Find the position x of the mass at the times  t = π/12, π/8, π/6, π/4, and 9π/32 s.  (Use  g = 9.8 m/s2  for the acceleration due to gravity.)
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion. 2. A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to times the...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 13 1 3 feet. The ball is started in motion from the equilibrium position with a downward velocity of 7 7 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT