Question

A small object moves along the x x -axis with acceleration ax(t) a x ( t...

A small object moves along the x x -axis with acceleration ax(t) a x ( t ) = −(0.0320m/s3)(15.0s−t) − ( 0.0320 m / s 3 ) ( 15.0 s − t ) . At t t = 0 the object is at x x = -14.0 m m and has velocity v0x v 0 x = 6.40 m/s m / s . What is the xx-coordinate of the object when tt = 10.0 ss?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small object moves along the x-axis with acceleration ar = -a(1-t/to). At t = 0...
A small object moves along the x-axis with acceleration ar = -a(1-t/to). At t = 0 the object is at x = Xo meters and has velocity vo. What is the position of the object when t = 2to? a, xo, Vo, and to are positive constants.
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.60 s and t = 3.20 s. The average speed is the distance traveled divided by the time. Is the distance traveled equal to the displacement in this case? m/s (b) Determine the instantaneous speed at t = 1.60 s.   m/s Determine the instantaneous...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is in seconds, v is in m/s, A= 0.85 m/s2, and B= -0.69 m/s3. Acceleration= -0.53 m/s2 @ t=0 and the Displacement= -2.58 m b/w t=1s to t=3s. What is the distance traveled in meters, by the particle b/w times t=1s and t=3s?
An object moves along the x axis according to the equation x = 3.25t2 − 2.00t...
An object moves along the x axis according to the equation x = 3.25t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 3.30 s and t = 4.40 s. m/s (b) Determine the instantaneous speed at t = 3.30 s. m/s Determine the instantaneous speed at t = 4.40 s. m/s (c) Determine the average acceleration between t = 3.30 s and t = 4.40 s....
An object moves along the x axis according to the equation x = 3.65t2 − 2.00t...
An object moves along the x axis according to the equation x = 3.65t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.50 s and t = 3.50 s. m/s (b) Determine the instantaneous speed at t = 1.50 s. m/s Determine the instantaneous speed at t = 3.50 s. m/s (c) Determine the average acceleration between t = 1.50 s and t = 3.50 s....
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.60 s and t = 3.20 s. m/s (b) Determine the instantaneous speed at t = 1.60 s. m/s Determine the instantaneous speed at t = 3.20 s. m/s (c) Determine the average acceleration between t = 1.60 s and t = 3.20 s....
An object moves along the x axis according to the equation x = 3.20t2 − 2.00t...
An object moves along the x axis according to the equation x = 3.20t2 − 2.00t + 3.00, where x is in meters and t is in seconds. 1) Determine the average speed between t = 2.10 s and t = 3.40 s 2) Determine the instantaneous speed at t = 2.10 s. 3) Determine the instantaneous speed at t = 3.40 s. 4) Determine the average acceleration between t = 2.10 s and t = 3.40 s. 5) Determine...
The X component of the velocity of an object vibrating along the X-axis obeys the equation...
The X component of the velocity of an object vibrating along the X-axis obeys the equation Vx(t) = (0.444 m/s) sin[(25.4 rad/s)t + 0.223]. A. What is the amplitude of the motion of this object? B. What is the maximum acceleration of the vibration object?
1. The position of an object along the x-axis in meters is given by: x(t) =...
1. The position of an object along the x-axis in meters is given by: x(t) = 1 + 2t + 3t 2 ( a) Plot x(t) as a function of t from t = 0 s to 10 s, (b) At 2 s, what is position, speed, and acceleration of the object?
The x component of the velocity of an object vibrating along the x-axis obeys the equation...
The x component of the velocity of an object vibrating along the x-axis obeys the equation vx(t) = (0.445 m/s) sin[(25.4 rad/s)t + 0.223] 1) What is the object’s acceleration when its velocity has a maximum positive value? 2) What is the object’s position x when it has a velocity of -0.200 m/s and a positive acceleration value?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT