Question

Calculate the specific heat of a metal from the following data. A container made of the...

Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.8 kg and contains 12 kg of water. A 2.1 kg piece of the metal initially at a temperature of 165°C is dropped into the water. The container and water initially have a temperature of 13.0°C, and the final temperature of the entire system is 18.0°C.

Homework Answers

Answer #1

mass of container , mc = 3.8 kg

mass of water , mw = 12 kg

mass of metal , m =2.1 kg

initial temprature of metal , Tm = 165 degree C

initialy temprature of container and water , ti = 13 degree C

let the specific heat of the metal be C

final temprature , Tf = 18 degree C

heat lost by the metal = heat gained buy container + heat gained by water

m*C*(Ti - Tf) = mw*Cw*( Tf- Ti) + mc*C*( Tf - Ti)

2.1 * C*( 165 - 18) = 12 * 4186*( 18 - 13) + 3.8 * C*( 18-13 )

C = 866.96J/( degree . kg)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container...
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container made of the metal has a mass of 3.80 kg and contains 13.1 kg of water. A 1.40 kg piece of the same metal, initially at a temperature of 140 degrees C, is placed in the water. The container and water initially have a temperature of 15 degrees C, and the final temperature of the entire system is 18 degrees C.
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container...
Calculate the specific heat of a metal (in calories/gram-degree C) from the following data. A container made of the metal has a mass of 3.20 kg and contains 13.1 kg of water. A 1.80 kg piece of the same metal, initially at a temperature of 120 degrees C, is placed in the water. The container and water initially have a temperature of 15 degrees C, and the final temperature of the entire system is 18 degrees C.
Ch18.40 Calculate the specific heat of a metal from the following data. A container made of...
Ch18.40 Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.6 kg and contains 17 kg of water. A 2.0 kg piece of the metal initially at a temperature of 194
The following experiment is performed to calculate the specific heat of a certain metal. A 500...
The following experiment is performed to calculate the specific heat of a certain metal. A 500 gram container made of the metal contains 600 grams of at at a) water. Both are initially at 25.0 'C. Now a 200 gram piece of the metal 90.0 'C is placed in the water. The entire system comes to equilibrium 30.9 "C. specific heat of water = cwate=r 1.0Ocal/(gm "C) a)Assuming no heat loss to the surroundings, calculate the specific heat of the...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water....
A calorimeter made of copper (c=0.0923 cal/g-C°) of mass 300 g contains 450 grams of water. The container is initially at room temperature, 20°C. A 1 kg block of metal is heated to 100°C and placed in the water in the calorimeter. The final temperature of the system is 40°C. What is the specific heat of the metal?    A. 0.159 kcal/kg-C °    B. 0.591 kcal/kg-C° C. 0.519 kcal/kg-C° D. 0.915 kcal/kg-C°  
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water is taken in a calorimeter. The initial temp of the water in the calorimeter is 21.2 degrees C. To the calorimeter containing cold water 29.458 g metal at 98.9 degrees C is added. The final temperature of the contents of the calorimeter is measured to be 29.5 degreesC. (Given: density of water= 1.00 g/ml, specific heat of water= 4.184 J. G. -1 degrees C...
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum...
An unknown metal of mass 0.280 kg is heated to 160.0°C and dropped in an aluminum calorimeter of mass 0.250 kg that contains 0.170 kg of water at 30°C. The calorimeter, water, and unknown metal have a final temperature of 46.0°C. Find the specific heat of the unknown metal. Hint: you need the specific heat of water and aluminum. Use units of [J/(kg.K)] and the values in your book for the specific heat.
7. Calorimetry A piece of metal has mass 100 grams and an initial temperature of 100'C....
7. Calorimetry A piece of metal has mass 100 grams and an initial temperature of 100'C. lt is placed in an insulated container of mass 200 grams which contains 500 grams of water at an initial temperature of 17 .3"C. The container is made of the same material as the metal sample. lf the final temperature is 22.7'C, what is the specific heat capacity of this metal? How many calories ('1 cal = 4.186 J) are required to warm the...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in thermal equilibrium at +10°C. We place two blocks of metal in the water: one is a 45 g piece of copper with an initial temperature of +61°C; the second piece has a mass of 75 g and is initially at +100°C. The combined system reaches a final equilibrium temperature of +41°C. Calculate the specific heat capacity of the unknown second piece of metal.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT