Question

A mass slides down an incline ((30 degree), with respect to the horizontal) with frictional constant...

A mass slides down an incline ((30 degree), with respect to the horizontal) with frictional constant 0.15. the mass weighs 10 kg. find its acceleration and equations of motion.

Homework Answers

Answer #1

given:

mass=m=10 kg

angle of the incline=theta=30 degrees

friction coefficient=mu=0.15

forces acting on the mass are:

1. component of weight along the incline=m*g*sin(theta)

2. component of weight perpendicular to the incline=m*g*cos(theta)

3. friction force, in opposite direction of motion=mu*normal force=mu*m*g*cos(theta)

so total force along the incline=m*g*sin(theta)-mu*m*g*cos(theta)

acceleration=total force/mass

=g*sin(theta)-mu*g*cos(theta)

=3.6269 m/s^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 25kg box is released on a 30 degree incline and accelerates down the incline at...
a 25kg box is released on a 30 degree incline and accelerates down the incline at 2 m/s^2. Find the friciton force impeding its motion.
2. A block slides down a plane inclined at 35o with respect to the horizontal, with...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with coefficient of kinetic friction 0.2. Find the ratio of the time taken to slide down the plane starting from rest, compared to the time it would take to slide down the plane if it were frictionless. 3. A 20 kg block slides frictionlessly down an inclined plane that is 2.8 m long and 1.2 m high. A person pushes up against the block, parallel...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A small block has constant acceleration as it slides down a frictionless incline. The block is...
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 7.00 mm to the bottom of the incline is 3.80 m/s . What is the speed of the block when it is 3.00 mm from the top of the incline?
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Determine the speed of the block with mass m = 2.10 kg after the collision. Determine the speed of the...
A 290 kg piano slides 4.3 m down a 30 degree incline and is kept from...
A 290 kg piano slides 4.3 m down a 30 degree incline and is kept from accelerating by a man who is pushing back on it parallel to the incline. The effective coefficient of kinetic friction is 0.40. (a) Calculate the force exerted by the man (N). (b) Calculate the work done by the man on the piano. (J). (c) Calculate the work done by the friction force (J). (d) What is the work done by the force of gravity...
starting at rest, a mass of 2.50 kg slides down an incline of 65.0 degrees. If...
starting at rest, a mass of 2.50 kg slides down an incline of 65.0 degrees. If the coefficient of kinetic friction is know to be 0.435, what is the speed of the mass after slinging 2.50 m down the incline
A 3.00 kg block slides down a 37.0 degree inclined plane. If the acceleration of the...
A 3.00 kg block slides down a 37.0 degree inclined plane. If the acceleration of the block is 1.52 m/s2, a) the force of kinetic friction on the block. b) the normal force on the block. c) the coefficient of kinetic friction on the block. d) the angle needed to make the block slide down the incline at a constant speed.
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes...
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes an angle of 30 degrees with the horizontal. The coefficient of kinetic friction between the block and the incline is 0.3. If the block is has an initial speed of 2mis down the incline at the top of the incline, then what is the speed at the bottom? Show calculations. Indicate answer. In the previous problem, what was the gain in Kinetic Energy? Show...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT