Question

A 0.4 kg piece of ice at -19 ∘C is dropped from a height h. Upon...

A 0.4 kg piece of ice at -19 ∘C is dropped from a height h. Upon impact, 6 % of its kinetic energy is converted into heat energy.

If the impact transforms all of the ice into water that has a final temperature of 0 ∘C, find h.

Express your answer in meters to two significant figures.

Homework Answers

Answer #1

Kinetic Energy gained by ice just before impact is given by,

KE = m*g*h

here, m = mass of ice = 0.4 kg

g = 9.81 m/sec^2

h = ??

Energy required for converting -19 degC ice to 0 degC water is given by,

Q = m*C*dT + m*L

here, C = specific heat of ice = 2108 J/kg-K

dT = change in temperature = 0 - (-19) = 19 degC

L = Latent heat of fusion of ice = 334 J/gm = 3.34*10^5 J/kg

So, Q = 0.4*2108*19 + 0.4*3.34*10^5

Q = 149620.8 J

Energy transfer from kinetic energy to heat energy(E) = 6% of Kinetic energy

E = 0.06*m*g*h

given E = Q

So, h = Q/(0.06*m*g) = 149620.8/(0.06*0.4*9.81) = 635494 m

h = 6.4*10^5 m

Please upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 9.0×10−2-kg ice cube at 0.0 ∘C is dropped into a Styrofoam cup holding 0.35 kgkg...
A 9.0×10−2-kg ice cube at 0.0 ∘C is dropped into a Styrofoam cup holding 0.35 kgkg of water at 10 ∘C∘ A. Find the final temperature of the system. Assume the cup and the surroundings can be ignored. B.Find the amount of ice (if any) remaining. C. Find the initial temperature of the water that would be enough to just barely melt all of the ice. Express your answer using two significant figures.
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was...
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 82°C. What is the final temperature of the water after the ice has melted? in C
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was...
A 112-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 84°C. What is the final temperature of the water after the ice has melted? _________°C
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a 95-g aluminum calorimeter filled with 320 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
A 5.10 kg piece of solid copper metal at an initial temperature T is placed with...
A 5.10 kg piece of solid copper metal at an initial temperature T is placed with 2.00 kg of ice that is initially at -25.0 ∘C. The ice is in an insulated container of negligible mass and no heat is exchanged with the surroundings. After thermal equilibrium is reached, there is 0.90 kg of ice and 1.10 kg of liquid water. Part A What was the initial temperature of the piece of copper? Express your answer to three significant figures...
1. A 74.20 kg piece of copper metal is heated from 21.5°C to 335.1°C. Calculate the...
1. A 74.20 kg piece of copper metal is heated from 21.5°C to 335.1°C. Calculate the heat absorbed (in kJ) by the metal. 2. A sheet of gold weighing 10.9 g and at a temperature of 17.3°C is placed flat on a sheet of iron weighing 23.9 g and at a temperature of 52.2°C. What is the final temperature of the combined metals? Assume that no heat is lost to the surroundings. (Hint: The heat gained by the gold must...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a 95-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. Part A What...
A 116-g cube of ice at 0 ∘C is dropped into 1.26 kg of water that...
A 116-g cube of ice at 0 ∘C is dropped into 1.26 kg of water that was originally 80.1 ∘C. What is the final temperature of the water after the ice melts and the water comes to thermal equilibrium? This problem requires a lot of algebra. You will make fewer errors if you solve for the answer using symbols and then plug in the numbers. The specific heat of water and the latent heat of fusion for water are given...
1.00 kg of ice at -38.0 degrees C is dropped into 25.0 kg of water at...
1.00 kg of ice at -38.0 degrees C is dropped into 25.0 kg of water at 34.0 degrees C. What is the final temperature of the mixture?