Question

Use the Bohr model to find the longest wavelength of light in the Balmer series for...

Use the Bohr model to find the longest wavelength of light in the Balmer series for a triply-ionized Be atom (Z = 4). Recall that the Balmer series corresponds to transitions to the n = 2 level.

13.5 nm

117 nm

73.0 nm

41.1 nm

209 nm

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Bohr model to find the longest wavelength of light in the Balmer series for...
Use the Bohr model to find the longest wavelength of light in the Balmer series for a doubly-ionized Li atom (Z = 3). Recall that the Balmer series corresponds to transitions to the n = 2 level. 13.5 nm 117nm 73nm 41.2nm 209nm 700nm none of the above
Use the Bohr model to find the longest wavelength of light in the Paschen series for...
Use the Bohr model to find the longest wavelength of light in the Paschen series for a doubly-ionized Li atom (Z = 3). Recall that the Paschen series corresponds to transitions to the second excited-state (n = 3 level).
use the bohr modle to find the longest wavlength of ight in the balmer series for...
use the bohr modle to find the longest wavlength of ight in the balmer series for a doubly-ionized Li atom (Z=3). Recall that the Balmer series corresponds to transitions to the n = 2 level.
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will determine the kinetic, potential, and total energies of the hydrogen atom in the n=2 state, and find the wavelength of the photon emitted in the transition n=2?n=1. Find the wavelength for the transition n=3 ? n=2 for singly ionized helium, which has one electron and a nuclear charge of 2e. (Note that the value of the Rydberg constant is four times as great as...
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th...
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th Bohr orbit of the hydrogen atom. (b) Find the frequency of light emitted in the transition from the 149th orbit to the 145th orbit.
Astronomers use the line emission from the quantum state n = 3 to n = 2...
Astronomers use the line emission from the quantum state n = 3 to n = 2 to probe ionized hydrogen gas – that is, hydrogen gas stripped of its electron. In ionization equilibrium, a balance is established between the process of ionization and its reverse, recombination, in which a free electron e − and proton p recombine to form neutral atomic hydrogen H, releasing one or more photons γ : e − + p ↔ H + γ The recombination...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that...
The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a positive...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states...
1). The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1, the next smallest n=2, and so on, where n is a...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...