Question

Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will...

Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will determine the kinetic, potential, and total energies of the hydrogen atom in the n=2 state, and find the wavelength of the photon emitted in the transition n=2?n=1.

Find the wavelength for the transition n=3 ? n=2 for singly ionized helium, which has one electron and a nuclear charge of 2e. (Note that the value of the Rydberg constant is four times as great as for hydrogen because it is proportional to the square of the product of the nuclear charge and the electron charge.)

Express your answer in nanometers to three significant figures.

Homework Answers

Answer #1

Kinetic energy = 13.6 / n2

Potential energy = - 2*13.6 / n2

Total energy = - 13.6 / n2

Now, put n = 2 in the above three equations,

we get, Kinetic energy = 3.4 eV , Potential energy = -6.8 eV, Total energy = - 3.4 eV

Energy of emiited photon = -3.4 - (-13.6) = 10.2 eV

Wavelength = hc/Energy

Wavelength = 6.63e-34*3e8 / 10.2*1.6e-19

Wavelength = 1.218e-7 m or 121.8 nm

Another method to solve for wavelength is to use rydberg's constant

1/wavelength = - 1.097e7 (1/22 - 1/12 ) Here 1.097e7 is rydberg's constant

wavelength = 121.8 nm

For Helium ,

1/wavelength = 4.39e7 (1/9 -1 /4)

wavelength = 1.64e-7 m or 164 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2?...
Singly ionized helium (He+) atom/ion has a single remaining electron and a nuclear charge of +2? (twice that of a proton). Using the Bohr model with appropriate modifications, estimate a) the radius and b) the total energy (in electron volts) of such an atom in its first excited level. c) When the state of this atom changes from the first excited level to the ground level, a photon is emitted in the process. Estimate the energy (in electron volts) of...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
The ionized helium atom can be treated with a Bohr model with nuclear charge Z=2. The...
The ionized helium atom can be treated with a Bohr model with nuclear charge Z=2. The resulting energy levels are four times those of the hydrogen atom: Ehelium=4Ehydrogen= -(54.4eV)/n^2 From those energy levels, calculate the wavelengths of spectral lines from ionized helium for transitions that end on nf=1. Do any of these lie in the visible range? Would any spectral lines of ionized helium lie in the visible range?
why are the electrons of the helium atom not all in the 1s state. Which of...
why are the electrons of the helium atom not all in the 1s state. Which of the following choices best explains this observation? Coulomb's law the Pauli exclusion principle the Einstein quantum entanglement principle Rutherford's explanation of atomic structure the Heisenberg uncertainty principle 2.)There is a singly-ionized helium atom, which has 2 protons with its remaining electron in the ground state. Using the Bohr model calculation, determine the maximum wavelength in nanometers for a photon that could remove the remaining...
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that...
For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that results from the transition n = 3 to n = 1. The Rydberg constant is 2.18 x 10^-18 J.
) Describe the Bohr theory of the hydrogen atom and how it explains the line spectrum...
) Describe the Bohr theory of the hydrogen atom and how it explains the line spectrum of hydrogen. What is the energy and wavelength of the photon of energy that was emitted by hydrogen if one of its electrons dropped from the n=6 state to the n=2 state. In what region of the electromagnetic spectrum does this wavelength fall? Which color line is this in the line spectra of hydrogen?
a. what is the energy of the emitted photon if an electron in the hydrogen atom...
a. what is the energy of the emitted photon if an electron in the hydrogen atom makes a transition from the n=7 state to the n=2 state? b. Now, Imagine there is a photon with the same wavelength. What is the speed of this photon?
An electron in a hydrogen atom makes a transition from the n = 7 to the...
An electron in a hydrogen atom makes a transition from the n = 7 to the n = 2 energy state. Determine the wavelength of the emitted photon (in nm). Enter an integer.
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
Problem 1.18 Values for some properties of the n = 1 state of the Bohr model...
Problem 1.18 Values for some properties of the n = 1 state of the Bohr model of the hydrogen atom are given in the following table. Write the value of the same parameter (in the same units) for the n = 2 state. parameter n = 1 n = 2 momentum (kgms) 1.99 ⋅ 10-24 de Broglie wavelength (nm) 0.333 kinetic energy (Eh) 0.500 transition energy to n = 3 (Eh) 0.444 Part A Determine the momentum for the n...