Question

An electron is placed in a potential well, and it is found that it has evenly...

An electron is placed in a potential well, and it is found that it has evenly spaced energies, so to go from level n to level n+1 always takes 23.6 eV of energy. Which type of potential is it?

A.Infinite square well

B.Finite square well

C.Step potential

D.Simple harmonic oscillator

Something else

Homework Answers

Answer #1

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is confined in a harmonic oscillator potential well. What is the longest wavelength of...
An electron is confined in a harmonic oscillator potential well. What is the longest wavelength of light that the electron can absorb if the net force on the electron behaves as though it has a spring constant of 74 N/m? ( el = 9.11 × 10-31 kg, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J,  = 1.055 × 10-34 J · s, h = 6.626 × 10-34 J · s) A. 220 nm B. 230 nm...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly compressed to a width of L, without changing the electron’s energy. After the expansion, the electron is found in the n=1 state of the narrow well. What was the value of n for the initial state of the electron in the wider well?
1. As we increase the quantum number of an electron in a one-dimensional, infinite potential well,...
1. As we increase the quantum number of an electron in a one-dimensional, infinite potential well, what happens to the number of maximum points in the probability density function? It increases. It decreases. It remains the same 2. If an electron is to escape from a one-dimensional, finite well by absorbing a photon, which is true? The photon’s energy must equal the difference between the electron’s initial energy level and the bottom of the nonquantized region. The photon’s energy must...
Calculate the energy levels for n=1,2 and 3 for an electron in a potential well of...
Calculate the energy levels for n=1,2 and 3 for an electron in a potential well of width 0.25nm with inflate barriers on either side. The energies should be expressed in Kj/mol. The answers should be 580.5, 2322, and 5225 Kj/mol
An infinitely deep square well has width L = 2.5 nm. The potential energy is V...
An infinitely deep square well has width L = 2.5 nm. The potential energy is V = 0 eV inside the well (i.e., for 0 ≤ x ≤ L). Seven electrons are trapped in the well. 1) What is the ground state (lowest) energy of this seven electron system in eV? Eground = 2) What is the energy of the first excited state of the system in eV? NOTE: The first excited state is the one that has the lowest...
An electron is trapped in a square well of unknown width, L. It starts in unknown...
An electron is trapped in a square well of unknown width, L. It starts in unknown energy level, n. When it falls to level n-1 it emits a photon of wavelength λphoton = 2280 nm. When it falls from n-1 to n-2, it emits a photon of wavelength λphoton = 3192 nm. 1) What is the energy of the n to n-1 photon in eV? En to n-1 = 2) What is the energy of the n-1 to n-2 photon...
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state....
Consider an electron bound in a three dimensional simple harmonic oscillator potential in the n=1 state. Recall that the e- has spin 1/2 and that the n=1 level of the oscillator has l =1. Thus, there are six states {|n=1, l=1, ml, ms} with ml= +1, 0, -1 and ms = +/- 1/2. - Using these states as a basis find the six states with definite j and mj where J = L +s - What are the energy levels...
An electron is bound in a finite square well of width 1.85 nm and finite depth...
An electron is bound in a finite square well of width 1.85 nm and finite depth U0=6E?, where E? is the ground-state energy for an infinitely deep potential well that has the same width. If the electron is initially in the ground state level of the finite square well, E1=0.625E?, and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the finite well?
An electron is bound in a finite square well of width 2.00 nm and finite depth...
An electron is bound in a finite square well of width 2.00 nm and finite depth U0=6E?, where E?is the ground-state energy for an infinitely deep potential well that has the same width. Part A If the electron is initially in the ground state level of the finite square well, E1=0.625E?, and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the finite well? Express your answer numerically in meters using three significant...
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere....
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere. a) What are the energy eigenstates of this quantum system, and what are their energies? In the case of a discrete spectrum, explain where the quantization comes from. b) Suppose we take the wavefunction at a given time to be an arbitrary function of x that is symmetric around the center of the well (at x = a/2). Is this a stationary state in...