Question

It is placed at the corners of four charged particles, a square with side lenght d....

It is placed at the corners of four charged particles, a square with side lenght d. Particle 1,2 and 4 carry identical positive charges. The electrical forces exerted on particle 1 What is the charge of particle 3 in the corner opposite to particle 1 so that the vector sum is zero?

Homework Answers

Answer #1

. If any doubt plzzz comment me first.plzzzzzz like????

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At each of the four corners of a square with side length a, there is a...
At each of the four corners of a square with side length a, there is a charge +q. How many other charges are exerting electric forces on the charge at the lower-right corner? The square is placed so that its sides are either parallel or perpendicular to the x-axis.
Three identical charged particles sit at the corners of an equilateral triangle of side length 30...
Three identical charged particles sit at the corners of an equilateral triangle of side length 30 cm. Each particle has a charge of 8.5μc. The charges Q1 and Q2 are positive and Q3 is negative. A.) What are the magnitude and the direction of the net force on charge Q2 is: B.) What is the total electric potential energy of the charge combination is
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are separated by 4 cm. Calculate the charge on each particle. b) Two electrons and a proton are placed on corners of a square with sides 25 cm. The proton is opposite the empty corner. What is the magnitude of the electric force on the proton?
Four identical particles (charge Q=1.6 nC, mass m = 4 g) are placed at corners of...
Four identical particles (charge Q=1.6 nC, mass m = 4 g) are placed at corners of a square of side b = 5.9 cm. What is the electric potential energy of this system? (The electric potential energy is zero when the particles are very far apart.) The particles are now released from rest. What is the speed of each particle when they are very far apart? (You may ignore gravity.)
Identical point charges of +1.2 µC are fixed to three of the four corners of a...
Identical point charges of +1.2 µC are fixed to three of the four corners of a square. What is the magnitude |q| of the negative point charge that must be fixed to the fourth corner, so that the charge at the diagonally opposite corner experiences a net force of zero? |q| = Number _______ Units _____
Four particles each have a positive charge of 6.00 x 10-16 C. The charges are arranged...
Four particles each have a positive charge of 6.00 x 10-16 C. The charges are arranged on the four corners of a square that is 25.0 cm on a side. What is the net force experienced by the particle located on the bottom-left corner of the square?
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 3.50 cm . Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3 = -5.00 μC moves from point a to point b. How much work is done on q3 by...
Four point charges with magnitude 5.0 microcoulumbs are placed at the corners of a square that...
Four point charges with magnitude 5.0 microcoulumbs are placed at the corners of a square that is 30.0 cm on a side. Two charges, diagonally opposite each other, are positive, and the other two are negative. What are the magnitude and the direction of the force on one of the charges?
Find the charge Q that should be placed at the center of the square of side...
Find the charge Q that should be placed at the center of the square of side 4.80E+0 cm, at the corners of which four identical charges +q = 6 C are placed so that the whole system is in equilibrium.
Four identical particles, each having charge q=28 micro coulomb , are fixed at the corners of...
Four identical particles, each having charge q=28 micro coulomb , are fixed at the corners of a square of side L=25cm . A fifth point charge Q=-28 micro coulomb lies a distance z=7cm along the line perpendicular to the plane of the square and passing through the center of the square as shown in Figure 3. Calculate the force exerted by the other four charges on -Q ?