Question

Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the...

Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 3.50 cm . Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges.

A point charge q3 = -5.00 μC moves from point a to point b. How much work is done on q3 by the electric forces exerted by q1 and q2?

Express your answer with the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners of a square of side a=2 cm . Charge q3 is located diagonally opposed to the empty corner of the square. Calculate the electric potential created by the three charges at the empty corner of the square. Calculate the work done by the electric field of the three charges when a fourth charge q4=-4 μC moves from the center of the square to the...
Two charges Q1= 4 μC and Q2= -38 μC are placed on the two corners of...
Two charges Q1= 4 μC and Q2= -38 μC are placed on the two corners of a square as shown in the figure below. If the side length of the square is a=62 mm, how much work is required to bring a third charge, Q3= -12 μC from infinitely far away to the empty bottom-right corner of the square? Please take k = 9.0 x 109 N.m2/C2 and express your answer using one decimal place in units of J or...
Two charges Q1= -49 μC and   Q2= -26 μC are placed on the two corners of an...
Two charges Q1= -49 μC and   Q2= -26 μC are placed on the two corners of an equilateral triangle as shown in the figure below. If the side length of the triangle is a=90 mm, how much work is required to bring a third charge,  Q3= 34 μC from infinitely far away to the empty corner of the triangle? Please take k = 9.0 x 109 N.m2/C2 and express your answer using one decimal place in units of J or N.m. Please...
Three point charges q1, q2, and q3 are situated at three corners of a rectangle as...
Three point charges q1, q2, and q3 are situated at three corners of a rectangle as shown in the diagram below. Here q1 = +9.00 µC, q2 = −9.00 µC, q3 = +2.00 µC. https://www.webassign.net/webassignalgphys1/19-p-026.gif (a) What is the electric potential at the free corner where there is no charge? V (b) What charge should be placed at the free corner for the electric potential at the center of the rectangle to be zero? Include both magnitude and sign if...
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges...
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges q1 and q4 are located on opposite corners and have equal charges. Both q2 and q3 have a charge of 1.0 C. If the force on q2 is zero, what is the charge on q1? A. -1.0 C B. -0.35 C C. -0.71 C D. -0.20 C
The figure shows three charges q1, q2 and q3 situated at corners of a rectangle of...
The figure shows three charges q1, q2 and q3 situated at corners of a rectangle of sides a = 15.0 cm and b = 7.0 cm. 1) For q1 = 5.80 μC, q2 = -5.80 μC, and q3 = 2.30 μC find the electric potential at the center of the rectangle. 2) Continuing with the figure above, how much of the electric energy of the system would be expended in moving q3 to infinity while q1 and q2 remain in...
Three +3.0 μC point charges are at the three corners of a square of side 0.50...
Three +3.0 μC point charges are at the three corners of a square of side 0.50 m. The remaining corner is occupied by a negative -3.0 μC charge. Find the magnitude of the electric field at the center of the square. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Four equal +6.00-μC point charges are placed at the corners of a square 2.00 m on...
Four equal +6.00-μC point charges are placed at the corners of a square 2.00 m on each side. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2). Show your work. a) What is the electric potential (relative to infinity) due to these charges at the center of this square? b) What is the magnitude of the electric field due to these charges at the center of the square? Please show work and a pic for reference THNKS
Three +3.0-μC point charges are at the three corners of a square of side 0.50 m....
Three +3.0-μC point charges are at the three corners of a square of side 0.50 m. The last corner is occupied by a -3.0-μC charge. Find the magnitude of the electric field at the center of the square. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Consider a square which is 1.0 m on a side. Charges are placed at the corners...
Consider a square which is 1.0 m on a side. Charges are placed at the corners of the square as follows: +4.0 μC at (0, 0); +4.0 μC at (1, 1); +3.0 μC at (1, 0); -3.0 μC at (0, 1). What is the magnitude of the electric field at the square's center?