Question

The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and...

The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and for water is 4186 J/kg?C?. What will be the equilibrium temperature when a 215 g block of copper at 255 ?C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 16.0 ?C?

Homework Answers

Answer #1

Suppose the final temperature is T.

Now Using energy conservation:

Heat gained by water and calorimeter = Heat released by copper

Q1 + Q2 = Q3

m1*C1*dT1 + m2*C2*dT2 = m3*C3*dT3

dT1 = Tf - Ti = T - 16

dT2 = T - 16

dT3 = 255 - T

m1 = mass of water = 0.875 kg

m2 = mass of calorimeter = 0.155 kg

m3 = mass of copper = 0.215 kg

Now using given values:

0.875*4186*(T - 16) + 0.155*900*(T - 16) = 0.215*390*(255 - T)

Now Solving above equation

T = (0.875*4186*16 + 0.155*900*16 + 0.215*390*255)/(0.875*4186 + 0.155*900 + 0.215*255)

T = 21.32 C

Please Upvote.

OR you can use this formula directly next time

T = (m1c1T1 + m2c2T2 + m3c3T3)/(m1c1 + m2c2 + m3c3)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘ What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 12.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 275 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 845 g of water at 14.0 ∘C? Express your answer using three significant figures.
In an experiment, 100 g of aluminum (with a specific heat of 900 J/kg·K) at 79.0°C...
In an experiment, 100 g of aluminum (with a specific heat of 900 J/kg·K) at 79.0°C is mixed with 80.0 g of water (with a specific heat of 4186 J/kg·K) at 43.0°C, with the mixture thermally isolated. (a) What is the equilibrium temperature? What are the entropy changes of (b) the aluminum, (c) the water, and (d) the aluminum-water system?
In an experiment, 150 g of aluminum (with a specific heat of 900 J/kg·K) at 67.0°C...
In an experiment, 150 g of aluminum (with a specific heat of 900 J/kg·K) at 67.0°C is mixed with 69.0 g of water (with a specific heat of 4186 J/kg·K) at 18.0°C, with the mixture thermally isolated. (a) What is the equilibrium temperature? What are the entropy changes of (b) the aluminum, (c) the water, and (d) the aluminum-water system?
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC...
A student doing an experiment pours 0.500 kg of heated metal whose temperature is 98.0 oC into a 0.356 kg aluminum calorimeter cup containing 0.418 kg of water at 28.0 °C. The mixture (and the cup) comes to thermal equilibrium at 38.0 °C. The specific heat of the metal is ________ J/kg oC. (specific heat of aluminum = 900 J/kg oC, specific heat of water = 4186 J/kg oC)
A 215-g sample of a substance is heated to 350 ∘C and then plunged into a...
A 215-g sample of a substance is heated to 350 ∘C and then plunged into a 105-g aluminum calorimeter cup containing 185 g of water and a 17-g glass thermometer at 12.5 ∘C. The final temperature is 35.0∘C. The value of specific heat for aluminium is 900 J/kg⋅C∘ , for glass is 840 J/kg⋅C∘ , and for water is 4186 J/kg⋅C∘ What is the specific heat of the substance? (Assume no water boils away.) Express your answer using three significant...
A cube of ice is taken from the freezer at -5.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -5.5 ∘C and placed in a 85-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
Assuming the specific heat of water is 4200 J/kg/K and the specific heat of aluminum is...
Assuming the specific heat of water is 4200 J/kg/K and the specific heat of aluminum is 900 J/Kg/K, what is the increase of the system's entropy by the time it will reach equilibrium in temperature if it is 160 grams of aluminum at 370 deg. K in a cup of 1.3 kg of water at 281 deg. K
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT