Question

1. A flask containing 800 g. of water is heated. If the temperature of the water...

1. A flask containing 800 g. of water is heated. If the temperature of the water increases from 20 degrees Celsius to 85 degrees Celsius, how much heat (in joules) did the water absorb?

2. How much heat, in joules, and in calories, must be added to a 75 g. iron block with a specific heat of 0.451 J/g degree Celsius to increase its temperature from 25 degrees Celsius to its melting temperature of 1535 degrees Celsius?

3. Consider sound waves with a speed of 344m/s and frequency of 20 Hz. Find the wavelength of the sound wave.

4. A sound wave has a speed of 344 m/s and a wavelength of 0.5 m. What is the frequency of the wave?

5. A periodic wave has a period of 0.40 s. What is the wave frequency?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 3 Part A An aluminium saucepan containing 1 kg of water is heated by a...
Question 3 Part A An aluminium saucepan containing 1 kg of water is heated by a hot plate as shown in the figure below. The pan has a cylindrical shape, with a radius of 15 cm. The thickness of the aluminium section at the bottom is 10 mm. The air temperature is 25 degrees celsius, and water temperature in the pan is uniform at 100 degrees celsius. a. Calculate the heat transfer rate via convection at the water surface. b....
35 mL of water is at 87 degrees Celsius. This water is heated, becomes steam and...
35 mL of water is at 87 degrees Celsius. This water is heated, becomes steam and then continues heating to a temperature of 106 degrees Celsius. How much heat was absorbed due to this process? Cwater= 4.186 J/g C       Csteam= 2.02 J/g C         Vaporization: 40.65 kJ/mol
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
A 47.5 block of an unknown metal is heated in a hot water bath to 100...
A 47.5 block of an unknown metal is heated in a hot water bath to 100 degrees Celsius. When the block is placed in an insulated vessel containing 130.0 g of water at 25.0 degrees Celsius, the final temperature is 28.0 degrees Celsius. Determine the specific heat of the unknown metal. The Cs for water is 4.18 J/g degrees Celsius.
A metal is heated to 100 degrees Celsius and is cooled in room temperature water at...
A metal is heated to 100 degrees Celsius and is cooled in room temperature water at 20 degrees Celsius. If the mass of the water is 100g, the metal's mass is 45g, and the final temperature of the water/metal system is 31 degrees Celsius, what is the specific heart of the metal. Please leave final answer in kg.
You are in a boat traveling perpendicular to waves in water. The wave speed is 8.20...
You are in a boat traveling perpendicular to waves in water. The wave speed is 8.20 m/s, your speed is 6.80 m/s, and you are heading into the waves. If the wavelength of the waves is 8.20 m, how much time passes between hitting the top of one wave and the next? [This Doppler effect in water is just like that in sound; you can also calculate it from velocities and length.] __________ s
The speed of sound is proportional to the square root of the absolute temperature, defined by:...
The speed of sound is proportional to the square root of the absolute temperature, defined by: Tabs = 273 + Tc where Tc is the temperature in degrees Celsius. A trumpet is tuned to B♭ (466 Hz), when it is initially cold at 20◦C. After playing for a while, it warms up to 30◦C. What is the new frequency of the trumpet (i.e., how far out of tune is it)? Assume the speed of sound at 20◦C to be 343...
*I NEED ALL THE QUESTIONS ANSWERS* 1.When the period of oscillation decreases, the (a) amplitude increases,...
*I NEED ALL THE QUESTIONS ANSWERS* 1.When the period of oscillation decreases, the (a) amplitude increases, (b) frequency    increases, (c) wavelength increases, (d) frequency decreases. 2.Sound is (a) transverse wave, (b) longitudinal wave, (c) standing wave, (d) magnetic wave. 3.When two waves interfere, which of the following add? (a) wavelength, (b) frequency, (c) phase, (d) amplitude. 4.The wave speed is equal to (a) the ratio of the frequency and wavelength, (b) the ratio of the frequency and the period, (c)...
suppose the specific heat of ice and water is 0.49 cal/g. C ( C represent degree...
suppose the specific heat of ice and water is 0.49 cal/g. C ( C represent degree Celsius) and 1.0 cal/g. C. the latent heat of fusion of water is 80 cal/g. how much heat (in calories) is required for 100 grams of ice with an initial temperature of -10 C to a. raise the ice's temperature to the melting point? b. then completely melt the ice to water? c. finally, raise the water's temperature to 50 C?
A guitar string of length 72.8 cm (which might be out of tune) has been plucked...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked and is producing a note of frequency 334 Hz. (a) What is the speed of transverse traveling waves on this guitar string? Give your answer in m/s. HINT: The note you hear is produced by the vibrational mode of the string which has the fundamental (lowest possible) frequency. Draw a picture of the string vibrating in that mode and determine the wavelength of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT