Question

You pour 200 g hot coffee at 78.7°C and some cold cream at 7.50°C to a 115-g cup that is initially at a temperature of 22.0°C. The cup, coffee, and cream reach an equilibrium temperature of 62.0°C. The material of the cup has a specific heat of 0.2604 kcal/(kg · °C) and the specific heat of both the coffee and cream is 1.00 kcal/(kg · C). If no heat is lost to the surroundings or gained from the surroundings, how much cream did you add?

Answer #1

The overall change in energy must be 0.

Change in energy of the coffee

= (0.200 kg) * (62.0 - 78.7 C°) * (1.00 kcal/(kg C°) )

= -3.34 kcal

Change in energy of the cream

= (x kg) * (62.0 - 7.50 C°) * (1.00 kcal/(kg C°) )

= 54.5x kcal

Change in energy of the cup

= (0.115 kg) * (62.0 - 22.0 C°) * (0.2604 kcal/(kg C°))

= 1.19784 kcal

If we add them up, the sum should be 0 (since no heat was lost to the surroundings):

-3.34 + 54.5x + 1.19784 = 0

x = 0.0393

x = 0.039 ( appprox)

Therefore, the amount of cream was

x = 0.039kg = 39 g

I hope this will help you. Have a good day. Please give a like. Its very important. Thanks.

you pour 130 g hot coffee at 78.7°C and some cold cream at
7.50°C to a 115-g cup that is initially at a temperature of 22.0°C.
The cup, coffee, and cream reach an equilibrium temperature of
61.0°C. The material of the cup has a specific heat of 0.2604
kcal/(kg · °C) and the specific heat of both the coffee and cream
is 1.00 kcal/(kg · C). If no heat is lost to the surroundings or
gained from the surroundings, how...

A hot lump of 47.6 g of iron at an initial temperature of 50.8
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 37.8 g of iron at an initial temperature of 51.3
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 44.5 g of iron at an initial temperature of 74.5
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 46.2 g of copper at an initial temperature of 93.9
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
copper and water given that the specific heat of copper is 0.385
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 27.5 g of copper at an initial temperature of 54.7
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
copper and water given that the specific heat of copper is 0.385
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 26.3 g of aluminum at an initial temperature of
67.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and
allowed to reach thermal equilibrium. What is the final temperature
of the aluminum and water given that the specific heat of aluminum
is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 46.0 g of iron at an initial temperature of 91.5
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 42.6 g of aluminum at an initial temperature of
62.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and
allowed to reach thermal equilibrium. What is the final temperature
of the aluminum and water given that the specific heat of aluminum
is 0.903 J/(g·°C)? Assume no heat is lost to surroundings. Please
show all work

A hot lump of 38.038.0 g of iron at an initial temperature of
79.7 °C79.7 °C is placed in 50.0 mL H2OH2O initially at 25.0 °C and
allowed to reach thermal equilibrium. What is the final temperature
of the iron and water, given that the specific heat of iron is
0.449 J/(g·°C)?0.449 J/(g·°C)? Assume no heat is lost to
surroundings.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 15 minutes ago

asked 16 minutes ago

asked 32 minutes ago

asked 41 minutes ago

asked 50 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago