Question

Two very small +5.0 μC charges are placed at the ends of a meter stick. At...

  1. Two very small +5.0 μC charges are placed at the ends of a meter stick. At the point 40 cm from the left side of meter stick, Find    (k = 9 × 109 N ∙ m2/C2)           1.1 A) Find the magnitude and direction of results of electric force.

B) Find the results of electric potential (relative to infinity).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Four equal +6.00-μC point charges are placed at the corners of a square 2.00 m on...
Four equal +6.00-μC point charges are placed at the corners of a square 2.00 m on each side. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2). Show your work. a) What is the electric potential (relative to infinity) due to these charges at the center of this square? b) What is the magnitude of the electric field due to these charges at the center of the square? Please show work and a pic for reference THNKS
A -5.00-μC point charge is placed at the 0.0 cm mark of a meter stick and...
A -5.00-μC point charge is placed at the 0.0 cm mark of a meter stick and a 4.00-μC point charge is placed at the 50.0 cm mark. At what point on a line through the ends of the meter stick is the electric field equal to zero?
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at...
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at the origin, -2.0 μC to the right at x = 50 cm, and +4.0 μC at the 100 cm mark. a. Find the net electric force (magnitude and direction) that acts on the charge at the origin. b. Find the net electric field (magnitude and direction) at x = 25 cm. c. Find the net electric force (magnitude and direction) on a charge Q...
Three point charges +4.0 μC, -5.0 μC, and -9.0 μC are placed on the x-axis at...
Three point charges +4.0 μC, -5.0 μC, and -9.0 μC are placed on the x-axis at the points x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the electric potential at x = 80 cm?
Three +3.0 μC point charges are at the three corners of a square of side 0.50...
Three +3.0 μC point charges are at the three corners of a square of side 0.50 m. The remaining corner is occupied by a negative -3.0 μC charge. Find the magnitude of the electric field at the center of the square. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Three +3.0-μC point charges are at the three corners of a square of side 0.50 m....
Three +3.0-μC point charges are at the three corners of a square of side 0.50 m. The last corner is occupied by a -3.0-μC charge. Find the magnitude of the electric field at the center of the square. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Two very small +3.00 μC charges are one meter apart. Find the electrical potential in the...
Two very small +3.00 μC charges are one meter apart. Find the electrical potential in the center of the distance. (k = 9.0 x 10 ^ 9 N x m ^ 2 / C ^ 2) a. 0.00V b. 2.70 x 10^4 V c. 5.40 x10^4 V d. 1.08 x 10^5 V
A point charge q1 = -1.5 μC is placed at x = 0 and y =...
A point charge q1 = -1.5 μC is placed at x = 0 and y = +5 cm. A second point charge q2 = -6 μC is placed at x = +5 cm and y = 0. Determine the magnitude of the net electric field at the origin and the direction of the electric field as an angle measured from the +x axis. Use k = 9.00 109 N·m2/C2.
Three point charges are located on the x-axis at the following positions: Q1 = +4.00 μC...
Three point charges are located on the x-axis at the following positions: Q1 = +4.00 μC is at x = 1.00 m, Q2 = +6.00 μC is at x = 0.00, and Q3 = -8.00 μC is at x = -1.00 m. What is the magnitude of the electric force on Q2? (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Two-point charges, Q1 = 3.0 μC and Q2 = -2.0 μC , are placed on the...
Two-point charges, Q1 = 3.0 μC and Q2 = -2.0 μC , are placed on the x-axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 5.0 cm. At what point(s) along the xx axis is the electric field zero? Determine the xx-coordinate(s) of the point(s). At what point(s) along the xx axis is the potential zero? Determine the xx-coordinate(s) of the point(s).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT