Question

Three Capacitor are connected in series ; C1 = 2.9 ; C2 = 2.6 ; C3...

Three Capacitor are connected in series ; C1 = 2.9 ; C2 = 2.6 ; C3 = 5.4 all micro Farads. What is the equivalent Capacitance ?

Homework Answers

Answer #1

Given:

Three capacitors:

-------

For capacitors connected in series,

equivalent capacitance,

----------

Take reciporcal on both sides

ANSWER:

==============================

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A battery is connected purely in parallel to three capacitors of C1 = 6 micro-farads, C2...
A battery is connected purely in parallel to three capacitors of C1 = 6 micro-farads, C2 = 9 micro-farads, and C3 = 11 micro-farads. Then, one additional capacitor of 8 micro-farads is added in parallel to the other three capacitors and due to this, the total stored energy of all the capacitors increases by 196 micro-joules (it is 196 micro-joules larger with four capacitors compared to with three capacitors). Then, the same four capacitors are connected in SERIES to the...
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0...
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0 microF and C3=8.0 microF. This circuit is connected to a battery delivering V=15.0 V. Find charge stored in capacitor C2 in mircoC.
I have four capacitors with capacitances C1, C2, C3, and C4 connected in series. To save...
I have four capacitors with capacitances C1, C2, C3, and C4 connected in series. To save space I replace them with a single capacitor that has the same equivalent capacitance C as the four capacitors together. Which of the following is true? A. C>C1 B. C<C2 C. C=C3 D. Not enough information to answer. 2. The role of a resistor in the circuit is to A. Convert kinetic energy of the electrons to thermal energy B. Convert thermal energy to...
Capacitor C1=4.0 microF is connected in parallel to the series combination of capacitors C2=13.0 microF anf...
Capacitor C1=4.0 microF is connected in parallel to the series combination of capacitors C2=13.0 microF anf C3=14.0 microF. This combination if connected to a battery of V=15.0 V. Find potential difference on capacitor C3.
A capacitance C1 = 14.6 μF is connected in series with a capacitance C2 = 5.8...
A capacitance C1 = 14.6 μF is connected in series with a capacitance C2 = 5.8 μF, and a potential difference of 150 V is applied across the pair. a. Calculate the equivalent capacitance. b. What is the charge on C2? c. What is the charge on C1? d. What is the potential difference across C2? e. What is the potential difference across C1? (c25p72) Repeat for the same two capacitors but with them now connected in parallel. f. Calculate...
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V....
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V. A dielectric is inserted between the plates of C2. A) Does inserting the dielectric increase or decrease the capacitance of C2? Explain. B) Does inserting the dielectric increase or decrease the equivalent capacitance of the two capacitor system? Explain. C) Is there more charge on the capacitors before or after the dielectric is inserted? Explain. D) Which system has a larger potential drop across...
In procedure 1 capacitors in series: Determine the equivalent capacitance assuming: C1 = 107 μF C2...
In procedure 1 capacitors in series: Determine the equivalent capacitance assuming: C1 = 107 μF C2 = 269 μF C3 = 407 μF Enter your response to three significant figures in units of μF. In procedure 2 capacitors in parallel : Determine the equivalent capacitance assuming: C1 = 197 μF C2 = 285 μF C3 = 422 μF Enter your response to three significant figures in units of μF. Edit: Removed part 3.
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If...
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If C1 = 5 µF and C3 = 100 nF, what is C2? Suppose V1 = 5 V. Find the charge on and voltage across the other two capacitors. Again, calculate energy stored. 2. A parallel plate capacitor has plates with area 10 cm2 and a gap of 2 mm. First, find the capacitance of this capacitor. Now, imagine a metal plate of thickness 0.25...
4) Five capacitors are connected purely in parallel. Three of them have same amount of charge...
4) Five capacitors are connected purely in parallel. Three of them have same amount of charge stored in them (all have Q), the fourth capacitor has 5.9 times more charge than Q, and the fifth capacitor has 3.6 times less charge than Q. If the equivalent capacitance of all the capacitors is 51 microfarads, what is the capacitance of the fifth capacitor in microfarads? 5) Five capacitors are connected purely in series to a 17 volt battery. Three of them...
A capacitor C1 is connected to a battery and charged to a voltage 180.0 V. It...
A capacitor C1 is connected to a battery and charged to a voltage 180.0 V. It is then disconnected from the battery and connected in parrallel to another capacitor C2 which is initially uncharged. After connection, the potential across C1 drops to 127.5 V. If C1= 30.0 µF find the capacitance of C2.