Question

An electric field of 2.15×104 V/m exists between the circular plates of a parallel-plate capacitor that...

An electric field of 2.15×104 V/m exists between the circular plates of a parallel-plate capacitor that has a plate separation of 2.25 mm. What is the potential difference across the capacitor plates?

What plate radius is required if the positively charged plate is to have a charge of 10.5 μC?

Homework Answers

Answer #1

Given the electric field
   
And the plate separation is
   
So, the potential difference is
   
  

The electric field between the plates is given by
     
   
And if the plates are circular then
   
so, we get
  
   
   
Now given the values,
   , , we get the value of the radius of the plates as

   
   
  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a plate separation of 6.9 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 51 Hz is applied across the plates; that is, V = (120 V) sin[2π(51 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 5.1 mm. Suppose also that a sinusoidal potential difference with a maximum value of 170 V and a frequency of 47 Hz is applied across the plates; that is, V = (170 V) sin[2?(47 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 4.3 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 72 Hz is applied across the plates; that is, V = (120 V) sin[2π(72 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
The electric field between the plates of a paper-separated (k=3.75) capacitor is 8.245104 V/m. The plates...
The electric field between the plates of a paper-separated (k=3.75) capacitor is 8.245104 V/m. The plates are 1.95 mm apart, and the charge on each plate is 0.775 C. Determine the capacitance of this capacitor and the area of each plate.
The electric field between the plates of a paper-separated (K=3.75) capacitor is 8.26×104 V/m . The...
The electric field between the plates of a paper-separated (K=3.75) capacitor is 8.26×104 V/m . The plates are 2.20 mm apart, and the charge on each plate is 0.685 μC . A. Determine the capacitance of this capacitor. Express your answer using three significant figures and include the appropriate units. B. Determine the area of each plate. Express your answer using three significant figures and include the appropriate units.
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate...
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate separation of 3 mm. The capacitor is fully charged across a 30 V battery, and then disconnected. How much charge is on the capacitor? Now material with a dielectric constant of 30 is inserted to fill the space between the plates, (with the battery disconnected), What is the charge on the capacitor? What is the energy stored in the capacitor? What the field between...
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a plate separation of 4.8 mm. Suppose also that a sinusoidal potential difference with a maximum value of 180 V and a frequency of 60 Hz is applied across the plates; that is V=(180.0 V)sin((2.*π)*(60 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 12.5 mm). Find B(r = 50.0 mm). Find...
Consider two parallel plates (as in a parallel plate capacitor), with plates which are very much...
Consider two parallel plates (as in a parallel plate capacitor), with plates which are very much wider than their separation, with an electric potential across the plates. Sketch the equipotential lines and field lines between the plates. If, the distance between the plates is 0.10 m, the potential of one plate is 0 V and the potential of the second plate is 10 V, what is the potential at a point 0.02 m from the second plate?
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a plate separation of 5.2 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 60 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(60 Hz * t)). a) Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b) Find B(r = 37.5 mm). c) Find B(r =...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 120 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(120 Hz * t)). a)Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b)Find B(r = 32.5 mm). c)Find B(r = 130.0 mm). d)Find...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT