Question

Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...

Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 5.1 mm. Suppose also that a sinusoidal potential difference with a maximum value of 170 V and a frequency of 47 Hz is applied across the plates; that is, V = (170 V) sin[2?(47 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.

Homework Answers

Answer #1

Here radius of the circular plates is R = 43 mm = 43*10-3m

seperation between the plates is d = 5.1 mm = 5.1*10-3m

frequency of voltage f = 47 Hz

Then angular frequency ? = 2?f = 2?*47 rad/sec

We know that magnetic field between the plates when r < = R is

      Bin=(?0?0r/2)dE/dt

E = V/d

Then Bin=(?0?0r/2d)dV/dt

Here V = ( Vmax) sin?t

dV/dt = ( Vmax)?cos?t

dV/dt = (170 V) cos[2?(47 Hz)t]*2?(47Hz)

?0= 4?*10-7H/m

?0= 8.85*10-12C2/Nm2

Here Vmax = 170 V

This grows until r = R = 43 mm = 0.043 m

Then Bmax =(?0?0R?/2d)Vmax

                  = [(4?*10-7H/m) * (8.85*10-12C2/Nm2)* 0.043 m *(2?*47 rad/sec )/2* 5.1 *10-3m]*170Volts

                   = 2.35*10-12T

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 4.3 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 72 Hz is applied across the plates; that is, V = (120 V) sin[2π(72 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a plate separation of 6.9 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 51 Hz is applied across the plates; that is, V = (120 V) sin[2π(51 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a plate separation of 4.8 mm. Suppose also that a sinusoidal potential difference with a maximum value of 180 V and a frequency of 60 Hz is applied across the plates; that is V=(180.0 V)sin((2.*π)*(60 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 12.5 mm). Find B(r = 50.0 mm). Find...
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a plate separation of 5.2 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 60 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(60 Hz * t)). a) Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b) Find B(r = 37.5 mm). c) Find B(r =...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 120 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(120 Hz * t)). a)Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b)Find B(r = 32.5 mm). c)Find B(r = 130.0 mm). d)Find...
1.) A parallel-plate capacitor has circular plates of 7.2 cm radius and 1.5 mm separation. Calculate...
1.) A parallel-plate capacitor has circular plates of 7.2 cm radius and 1.5 mm separation. Calculate the capacitance. 1.03x10^-10F Submit Answer Incorrect. Tries 4/5 Previous Tries 2.) What charge will appear on the plates if a potential difference of 6 V is applied?
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are separated by a distance of 1.8 mm. (a) What radius must the plates have if the capacitance of this capacitor is to be 2.6 µF? m (b) If the separation between the plates is decreased, should the radius of the plates be increased or decreased to maintain a capacitance of 2.6 µF? increased decreased Explain. This answer has not been graded yet. (c) Find...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are separated by a distance of 1.4 mm . What radius must the plates have if the capacitance of this capacitor is to be 1.5 μF ? If the separation between the plates is increased, should the radius of the plates be increased or decreased to maintain a capacitance of 1.5 μF ?
A capacitor with parallel circular plates of radius R is discharging via a current of 12.0...
A capacitor with parallel circular plates of radius R is discharging via a current of 12.0 A. Consider a loop of radius R/6 that is centered on the central axis between the plates. How much displacement current is encircled by the loop? Tries 0/10 The maximum induced magnetic field has a magnitude of 38 mT. At what radial distance from the central axis of the plate is the magnitude of the induced magnetic field 15.20 mT? (enter as a fraction...
A capacitor with parallel circular plates of radius R = 1cm is discharging via a current...
A capacitor with parallel circular plates of radius R = 1cm is discharging via a current of 10 Amp. Consider a loop of radius R/4 that is centered on the central axis between the plates. (a) How much displacement current is encircled by the loop? (b) Consider a new loop with radius r. At what radius inside the capacitor gap is the magnitude of the induced magnetic field half the maximum possible value? (maximum possible value can be written as...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT