Question

A musician in a concert hall is tuning her wind instrument. When she plays a short...

A musician in a concert hall is tuning her wind instrument. When she plays a short note she hears the echo of the note return from the opposite side of the 50.0 meter long auditorium 0.294 seconds later. Model the instrument as a tube closed at one end, if the instrument is properly tuned the note of the musician played would have a frequency of 233.082 Hz, but instead has a frequency of 226.513 Hz. This note is the first overtone, since the fundamental frequency is suppressed on this instrument. Find the speed of sound, find the temperature, and find the difference in length if properly tuned. Finally find the first and second frequencies for the properly tuned tube.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A musician in a concert hall is tuning her wind instrument. When she plays a short...
A musician in a concert hall is tuning her wind instrument. When she plays a short note she hears the echo of the note return from the opposite side of the 50.0 meter long auditorium 0.294 seconds later. Model the instrument as a tube closed at one end, if the instrument is properly tuned the note of the musician played would have a frequency of 233.082 Hz, but instead has a frequency of 226.513 Hz. This note is the first...
A musician in a concert hall is tuning her wind instrument. When she plays a short...
A musician in a concert hall is tuning her wind instrument. When she plays a short note she hears the echo of the note return from the opposite side of the 50.0 meter long auditorium 0.294 seconds later. Model the instrument as a tube closed at one end, if the instrument is properly tuned the note of the musician played would have a frequency of 233.082 Hz, but instead has a frequency of 226.513 Hz. This note is the first...
A musician in a concert hall is tuning her wind instrument. When she plays a short...
A musician in a concert hall is tuning her wind instrument. When she plays a short note she hears the echo of the note return from the opposite side of the 50.0 meter long auditorium 0.294 seconds later. Model the instrument as a tube closed at one end, if the instrument is properly tuned the note of the musician played would have a frequency of 233.082 Hz, but instead has a frequency of 226.513 Hz. This note is the first...
Jennifer is using a tuning fork to tune her fifth guitar string, which should be at...
Jennifer is using a tuning fork to tune her fifth guitar string, which should be at a frequency of 110Hz, or note A2 in music terms. When she rings the tuning fork and plucks her guitar string, she hears 4.00beats/s. (a) What are the two possible frequencies of Jennifer's guitar string? (b) When Jennifer loosens the string slightly, she hears 3.00beats/s. What is the frequency of the guitar string? (c) Guitar strings have a fundamental harmonic with a wavelength of...
1. If a wind instrument, such as a tuba, has a fundamental frequency of 30.1 Hz,...
1. If a wind instrument, such as a tuba, has a fundamental frequency of 30.1 Hz, what is its first overtone? It is closed at one end and the speed of sound is 334 m/s. 2. Find the length of an organ pipe closed at one end that produces a first overtone frequency of 276 Hz when air temperature is 21.3ºC . 3. A “showy” custom-built car has two brass horns that are supposed to produce the same frequency but...
A stone is dropped from the top of a cliff. The splash it makes when striking...
A stone is dropped from the top of a cliff. The splash it makes when striking the water below is heard 3.2 s later. How high is the cliff? 2. The pressure variation is a sound wave is given by Δ P = 0.0035 sin (0.38 π x – 1350 π t) Determine a. the wavelength b. the frequency c. the speed and d. the displacement amplitude of the wave. Assume the density of the medium to be 2.2 x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT