Question

You place 2.7 μC of charge along a long nonconducting rod. The rod extends from x...

You place 2.7 μC of charge along a long nonconducting rod. The rod extends from x = 0 farther than you can see along the positive x axis. The charge distribution has the form of a decreasing exponential: q(x)=q0*e^(−x/ℓ), where ℓ = 28.6 mm.

Calculate the electric field magnitude 20 mm from the near end of the rod, along its long axis. Express your answer with the appropriate units.

Homework Answers

Answer #1

Please rate
if any mistake in this answer please comment i will clarify your doubt . thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You place 2.7 μC of charge along a long nonconducting rod. The rod extends from x...
You place 2.7 μC of charge along a long nonconducting rod. The rod extends from x = 0 farther than you can see along the positive x axis. The charge distribution has the form of a decreasing exponential: q(x)=q0e−x/ℓ, where ℓ = 28.6 mm. Calculate the electric field magnitude 20 mm from the near end of the rod, along its long axis.
A thin rod extends along the z-axis form z = -d to z = d. The...
A thin rod extends along the z-axis form z = -d to z = d. The rod carries a charge Q uniformly distributed along its length 2d with linear charge density λ = Q/2d. a) Find the electric potential at a point z > d along the z-axis. Indicate clearly where you have chosen your zero reference point for your potential. b) Use the relationship E = - ∇ V to find the electric field at a point z >...
A very long uniform line of charge has charge per unit length 4.80 μC/m and lies...
A very long uniform line of charge has charge per unit length 4.80 μC/m and lies along the x-axis. A second long uniform line of charge has charge per unit length -2.32 μC/m and is parallel to the x-axis at y1 = 0.414 m . Part A What is the magnitude of the net electric field at point y2 = 0.214 mon the y-axis? Part B What is the magnitude of the net electric field at point y3 = 0.616...
A rod of length 10 meters and charge .6 μC lies along the x-axis from (-5,...
A rod of length 10 meters and charge .6 μC lies along the x-axis from (-5, 0) to (5, 0) meters. A charge of .4 μC is placed at (0, 3) meters. a) Find the electric potential energy of the system if the rod has a uniform charge density. b) Find the energy if the rod has a linear charge density given by λ = kx2. c) Find the answer to (a) and (b) if the .4 μC charge was...
6) A rod with length "l" is lied along x-axis. The charge density of the rod...
6) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the potential of the rod for a the point p on x-axis. 7) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the Electric field of the rod for a point p on x-axis.
Positive charge Q is distributed uniformly along a rod of length L that lies along the...
Positive charge Q is distributed uniformly along a rod of length L that lies along the x-axis from x=L to x=2L. How much charge is contained within a segment of the rod of length dx? Integrate to find the total electric potential at the origin (x=0) due to the rod. Express your answer in terms of the electric constant ϵ0epsilon_0 and variables Q,L
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0 ?C/m. The rod is placed along the y-axis and is centered at the origin. A charge of +43.0 ?C is placed 51.2 cm from the midpoint of the rod on the positive x-axis. Calculate the electric field at a point on the x-axis, which is halfway between the point charge and the center of the rod. (Express your answer in terms of the unit...
A point particle with charge q = 4.9 μC is placed on the x axis at...
A point particle with charge q = 4.9 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.8 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex_____ Ey_____ (b) Determine the magnitude and direction of...
A point particle with charge q = 4.6 μC is placed on the x axis at...
A point particle with charge q = 4.6 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.0 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex =   N/C Ey =   N/C (b) Determine the magnitude and...
Positive electric charge QQ is distributed uniformly along a thin rod of length 2aa. The rod...
Positive electric charge QQ is distributed uniformly along a thin rod of length 2aa. The rod lies along the xx-axis between x=−ax=−a and x=+ax=+a (Figure 1). Calculate how much work you must do to bring a positive point charge qq from infinity to the point x=+Lx=+L on the xx-axis, where L>aL>a. What does your result for the potential energy U(x=+L) become in the limit a→0? Express your answer in terms of some or all of the variables Q, q, a,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT