Question

A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC....

A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 36.0 cm from its center. magnitude=?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rod 12.0 cm long is uniformly charged and has a total charge of -21.0 µC....
A rod 12.0 cm long is uniformly charged and has a total charge of -21.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 36.0 cm from its center. magnitude N/C
12-A rod 16.0 cm long is uniformly charged and has a total charge of -21.0 µC....
12-A rod 16.0 cm long is uniformly charged and has a total charge of -21.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 40.0 cm from its center. magnitude 17-The charge per unit length on a long, straight filament is -94.7 µC/m. (a) Find the electric field 10.0 cm from the filament, where distances are measured perpendicular to the length of the filament. (Take radially inward toward the filament...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0 ?C/m. The rod is placed along the y-axis and is centered at the origin. A charge of +43.0 ?C is placed 51.2 cm from the midpoint of the rod on the positive x-axis. Calculate the electric field at a point on the x-axis, which is halfway between the point charge and the center of the rod. (Express your answer in terms of the unit...
A uniformly charged insulating rod of length 18.0 cm is bent into the shape of a...
A uniformly charged insulating rod of length 18.0 cm is bent into the shape of a semicircle as shown in the figure below. The rod has a total charge of −7.50 µC. (a) Find the magnitude of the electric field at O, the center of the semicircle. (b) Find the direction of the electric field at O, the center of the semicircle.
A conducting rod carrying a total charge of +3.00 µC is bent into a semicircle of...
A conducting rod carrying a total charge of +3.00 µC is bent into a semicircle of radius R = 36.0 cm, with its center of curvature at the origin (see figure below). The charge density along the rod is given by λ = λ0 sin(θ), where θ is measured clockwise from the +x axis. What is the magnitude of the electric force on a 1.00-µC charged particle placed at the origin?
A uniformly charged disk of radius 25.0 cm carries a charge density of 6.50*10^-3 C/m^2. a)...
A uniformly charged disk of radius 25.0 cm carries a charge density of 6.50*10^-3 C/m^2. a) from the definition of the electric field, derive the expression for the net electric field along a perpendicular line going through the center of the disk. b) Calculate the electric field on the axis of the disk at 50.0 cm from the center of the disk. c) Calculate the electric field on the axis of the disk at 2.0m from the center of the...
A solid sphere of radius 50.0 cm has a total positive charge of 25.0 μC uniformly...
A solid sphere of radius 50.0 cm has a total positive charge of 25.0 μC uniformly distributed throughout its volume. (a) Calculate the magnitude of the electric field at a point 10.0 cm from the center of the sphere. (b) Calculate the magnitude of the electric field at a point 75.0 cm from the center of the sphere. c) A proton enters a region containing a uniform electric field of magnitude 1.00 x 10^4 N/C. The separation between the plates...
A solid sphere of radius 40.0 cm has a total positive charge of 37.6 µC uniformly...
A solid sphere of radius 40.0 cm has a total positive charge of 37.6 µC uniformly distributed throughout its volume. Calculate the magnitude of the electric field at the following distances. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere kN/C (c) 40.0 cm from the center of the sphere kN/C (d) 65.0 cm from the center of the sphere kN/C
A solid sphere of radius 40.0 cm has a total positive charge of 38.4 µC uniformly...
A solid sphere of radius 40.0 cm has a total positive charge of 38.4 µC uniformly distributed throughout its volume. Calculate the magnitude of the electric field at the following distances. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere kN/C (c) 40.0 cm from the center of the sphere kN/C (d) 63.5 cm from the center of the sphere kN/C
A thin rod of length L=80 cm carries a total charge of +5 nC uniformly distributed...
A thin rod of length L=80 cm carries a total charge of +5 nC uniformly distributed over its left half and -5 nC over its right half. Find the electric field on the axis of the rod at distance r=400 cm from its rightmost end. What is the magnitude of the electric field at point P. (N/C)?