Question

A 1.2 kg mass attached to a spring (150 N/m) is pulled 12cm to the side...

A 1.2 kg mass attached to a spring (150 N/m) is pulled 12cm to the side and released. how far is the spring from its equilibrium length when the mass has half its maximum speed?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.300 kg mass is attached to a 26.6 N/m spring. It is pulled 0.120 m...
A 0.300 kg mass is attached to a 26.6 N/m spring. It is pulled 0.120 m and released. How much potential energy does it have when it is 0.0600 m from equilibrium? (Unit = J)
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant for the spring is 16\sqrt{3} N - sec/m. If the mas is pulled 30 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain?
A spring with spring constant 32 N/m is attached to the ceiling, and a 4.7-cm-diameter, 1.2...
A spring with spring constant 32 N/m is attached to the ceiling, and a 4.7-cm-diameter, 1.2 kg metal cylinder is attached to its lower end. The cylinder is held so that the spring is neither stretched nor compressed, then a tank of water is placed underneath with the surface of the water just touching the bottom of the cylinder. When released, the cylinder will oscillate a few times but, damped by the water, quickly reach an equilibrium position. When in...
A 3.70 kg mass is attached to a spring with a spring constant of 4.06 N/m...
A 3.70 kg mass is attached to a spring with a spring constant of 4.06 N/m . It is initially lifted away from its equilibrium position by 0.200 m in the positive direction and released from rest. A) What is the angular frequency for this oscillator? B) What is the time period for one oscillation for this oscillator? C) Draw out the motion of the oscillator on the graph at the top of the page. ( D) What is the...
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...