Question

A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.)

The left end of a horizontal spring is attached to a vertical wall, and the right end is attached to a block of mass m which can slide left and right on a horizontal surface. The spring is stretched from its equilibrium position by a distance A

(a) At that instant, find the force on the block. N

(b) At that instant, find its acceleration. m/s2

m/s^{2}

2)A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.80 ✕ 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position xi = 4.80 cm to the right of equilibrium and released from rest. The left end of a horizontal spring of force constant k is attached to a vertical wall. The right end is attached to a block of mass m, which rests on a horizontal floor. The equilibrium position of the spring is labeled x = 0. The block has been moved to the right to a position labeled x = xi, so that the spring is stretched.

(a) Find the work required to stretch the spring. J

(b) Find the speed the block has as it passes through equilibrium. m/s

Answer #1

1) a) F = - k*x = - 119*0.3 = - 35.7 N

b) F = m*a = - k*x

0.53*a = - 119*0.3

a = - 35.7/0.53

a = - 67.358 m/s^2

Negative sign shows that they are in opposite direction to the applied force.

2) a) W = 0.5*k*x^2

W = 0.5*580*4.8*4.8*10^-2

W = 66.816*10^-2 Joules.

b) now, there is no frictional force hence, kinetic energy at equilibrium is equal to potential energy at equilibrium. So,

K. E = P. E

0.5*m*v^2 = 0.5*k*x^2

v^2 = 580*4.8*4.8*10^-4/2

v = 81.74*10^-2 cm/s

v = 0.8174 m/s

A block of mass m = 0.79 kg is attached to a spring with force
constant 123.0 N/m. The block is free to move on a frictionless,
horizontal surface as shown in the figure. The block is released
from rest after the spring is stretched a distance A = 0.10 m to
the right. What is the potential energy of the spring/block system
0.25 s after releasing the block?

A 0.58 kg mass is attached to a light spring with a force
constant of 31.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
m/s
(b) speed of the oscillating mass when the spring is compressed 1.5
cm
m/s
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
m/s...

A block with mass m = 4.2 kg is attached to two springs with
spring constants kleft = 34 N/m and kright =
57 N/m. The block is pulled a distance x = 0.22 m to the left of
its equilibrium position and released from rest.
What is the magnitude of the net force on the block (the moment
it is released)?
What is the effective spring constant of the two springs?
N/m
What is the period of oscillation of...

A block with mass m = 5.7 kg is attached to two springs with
spring constants kleft = 36 N/m and kright =
53 N/m. The block is pulled a distance x = 0.22 m to the left of
its equilibrium position and released from rest.
1)
What is the magnitude of the net force on the block (the moment
it is released)?
N
2)
What is the effective spring constant of the two springs?
N/m
3)
What is the...

A block with mass m = 7.4 kg is attached to two springs with
spring constants kleft = 31 N/m and kright = 53 N/m. The block is
pulled a distance x = 0.27 m to the left of its equilibrium
position and released from rest.
7)
Where is the block located, relative to equilibrium, at a time
1.06 s after it is released? (if the block is left of equilibrium
give the answer as a negative value; if the...

A block with mass m = 4.6 kg is attached to two springs with
spring constants kleft = 37 N/m and kright = 51 N/m. The block is
pulled a distance x = 0.27 m to the left of its equilibrium
position and released from rest.
What is the magnitude of the net force on the block (the moment
it is released)?
What is the effective spring constant of the two springs?
What is the period of oscillation of the...

A block of mass m = 4.5 kg is attached to a spring with
spring constant k = 610 N/m. It is initially at rest on an
inclined plane that is at an angle of θ = 29° with respect
to the horizontal, and the coefficient of kinetic friction between
the block and the plane is μk = 0.13. In the
initial position, where the spring is compressed by a distance of
d = 0.19 m, the mass is at...

A block with mass m = 4.9 kg is attached to two springs with
spring constants kleft = 30 N/m and kright =
55 N/m. The block is pulled a distance x = 0.22 m to the left of
its equilibrium position and released from rest.
1)
What is the magnitude of the net force on the block (the moment
it is released)?
2)
What is the effective spring constant of the two springs?
3)
What is the period of...

A spring is attached to a wall, and a 0.50 kg block is attached
to the other end of the spring. The spring-block system sits on a
frictionless surface so that the block is able to oscillate without
losing energy. The spring constant of the spring is k = 25 N/m. The
block is pushed so that it compresses the spring by 20 cm beyond
its equilibrium position. The block is released from rest at
exactly the same time as...

An 81.9 g mass is attached to a horizontal spring with a spring
constant of 3.5 N/m and released from rest with an amplitude of
39.1 cm. What is the speed of the mass when it is halfway to the
equilibrium position if the surface is frictionless? Answer in
units of m/s.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 47 seconds ago

asked 1 minute ago

asked 1 minute ago

asked 1 minute ago

asked 1 minute ago

asked 1 minute ago

asked 4 minutes ago

asked 4 minutes ago

asked 4 minutes ago

asked 4 minutes ago

asked 4 minutes ago

asked 7 minutes ago