Question

A child sits on a merry‑go‑round that has a diameter of 4.00 m. The child uses...

A child sits on a merry‑go‑round that has a diameter of 4.00 m. The child uses her legs to push the merry‑go‑round, making it go from rest to an angular speed of 17.0 rpm in a time of 35.0 s.

What is the average angular acceleration αavg of the merry‑go‑round in units of radians per second squared (rad/s2)?

αavg: _______rad/s^2

What is the angular displacement Δθ of the merry‑go‑round, in units of radians (rad), during the time the child pushes the merry‑go‑round?

Δθ: _______ radians

What is the maximum tangential speed vmax of the child if she rides on the edge of the platform?

vmax:________m/s

Homework Answers

Answer #1

here,

the diameter , d = 4 m

the initial angular speed , w0 = 17 rpm = 1.78 rad/s

time taken , t = 35 s

a)

let the average angular acceleration of the merry‑go‑round be alpha

using first equation of motion

w = w0 + alpha * t

1.78 = 0 + alpha * 35

alpha = 5.083 * 10^-2 rad/s^2

b)

the angular displacement theta of the merry‑go‑round, theta = w^2 /2*alpha

theta = 1.78^2 /(2*5.083 * 10^-2) rad

theta = 31.2 rad

c)

the maximum tangential speed vmax of the child if she rides on the edge of the platform,v = r * w

v = 4 * 1.78 m/s = 7.12 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is a large disk of mass 150 kg and radius 1.5 m. The merry-go-round spins with an angular velocity of 12 rpm. What is the merry-go-round’s angular velocity in radians per second (rad/s)? What is the total rotational inertia (moment of inertia) of the child and merry-go-round together? What is the rotational kinetic energy (in joules) of the merry-go-round and child together? What magnitude of...
a 50.0 kg child is on a 200. kg merry-go-round with a radius of 1.50 m....
a 50.0 kg child is on a 200. kg merry-go-round with a radius of 1.50 m. the child starts at 0.5 m from the center and moves to the edge. the child's parent accelerates the merry-go-round from rest at 0.75 rad/s^2 to a speed of 1.5 rad/s. How long did the parent push the merry-go-round? how much force is required to hold the child when at 0.5 m from the center? determine the kinetic energy of the system when moving...
A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with...
A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with time according to θ(t)=γt+βt3θ, where γ= 0.350 rad/s and β= 1.25×10−2 rad/s3. Calculate the angular velocity of the merry-go-round as a function of time. Express your answer in terms of the variables β, γ, and t. What is the initial value of the angular velocity? Calculate the instantaneous value of the angular velocity ωz at t= 4.90 s Calculate the average angular velocity ωav−z...
A child of mass 60 kg sits at the center of a playground merry-go-round which is...
A child of mass 60 kg sits at the center of a playground merry-go-round which is spinning at 1.5 rad/s. The moment of inertia and radius of the merry-go-round are 150 kg×m2 and 1.2 m respectively. How much rotational kinetic energy does the system lose as the child moves to the edge of the merry-go-round? (Treat the child as a point mass.)
A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with...
A child is pushing a merry-go-round. The angle through which the merry-go-round has turned varies with time according to θ(t)=γt+β t 3 , where γ= 0.378 rad/s and β= 1.10×10−2 rad/ s 3 . Part A Calculate the angular velocity of the merry-go-round as a function of time. Express your answer in terms of the variables β , γ , and t . Part B What is the initial value of the angular velocity? Part C Calculate the instantaneous value...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? =...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? = 250 kg ⋅ m^2 is rotating at 15 rpm about a frictionless, vertical axle. Facing the axle, a 25-kg child hops onto the merry-goround and manages to sit down on the edge. (a) (10 pts) What is the total angular momentum of the ‘merry-go-round-child’ system before and after the child hops on the the merry-go-round? (b) (10 pts) What is the new angular speed,...
10 kids are riding on a merry-go-round. The merry-go-round has a radius of 3 m and...
10 kids are riding on a merry-go-round. The merry-go-round has a radius of 3 m and a mass of 2000 kg, and it is spinning with an angular velocity of 2 rad/s. The kids are riding at the rim of the merry-go-round, and they each have a mass of 30 kg. All of the kids jump radially off the merry-go-round, all at the same time. What would the angular velocity of the merry-go-round be after the kids jump off? Group...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is at rest, a 20 kg boy runs at 5.9 m/s along a line tangential to the rim and jumps on, landing on the rim a distance of 3.0 m from the rotation axis of the merry-go-round. The angular velocity of the merry-go-round is then: A.1.2 rad/s B.0.38 rad/s C.0.45 rad/s D.0.56 rad/s E.0.72 rad/s
At a playground, a 17-kg child sits on a spinning merry-go-round, as shown from above in...
At a playground, a 17-kg child sits on a spinning merry-go-round, as shown from above in (Figure 1).The merry-go-round completes one revolution every 6.2 s, and the child sits at a radius of r=1.8m. Part A What is the force of static friction acting on the child? Express your answer to two significant figures and include appropriate units. Part B What is the minimum coefficient of static friction between the child and the merry-go-round to keep the child from slipping?
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with...
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with a radius of 2.99 m. If the merry-go-round starts at rest and acquires an angular speed of 0.1250 rev/s in 5.00 s, what is its mass?