Question

Block A, mass 250 g, sits on top of block B, mass 2.0 kg. The coefficients...

Block A, mass 250 g, sits on top of block B, mass 2.0 kg. The coefficients of static and kinetic friction between blocks A and B are 0.34 and 0.23, respectively. Block B sits on a frictionless surface. What is the maximum horizontal force that can be applied to block B, without block A slipping?

Homework Answers

Answer #1

mass of block A = 250 g = 0.25 kg

mass of block B = 2 kg

coefficient of kinetic friction = 0.23

coefficient of static friction = 0.34

now, if block is not supposed to slip , then force experienced by A must be less than coefficient of static friction times the weight

= 0.34 * 0.25*9.8

= 0.833 N

therefore, a = 0.833/0.25

a = 3.332 m/s^2

Now, F_applied = (m1+m2) a

F_applied = (2+0.25)*3.332

F_applied = 7.5 N (Maximum horizontal force that can be applied to block B)

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface....
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface. The 5.0-kg block is pulled to the right with a force F⃗ . The coefficient of static friction between all surfaces is 0.60 and the kinetic coefficient is 0.37. a) What is the minimum value of F needed to move the two blocks? b) If the force is 10% greater than your answer for (a), what is the acceleration of each block?
Two identical blocks 3 kg are stacked as shown in (Figure 1). The bottom block is...
Two identical blocks 3 kg are stacked as shown in (Figure 1). The bottom block is free to slide on a frictionless surface. The coefficient of static friction between the blocks is 0.35.​ What is the maximum horizontal force that can be applied to the lower block without the upper block slipping?​
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0...
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0 meters per second. The block then encounters a 35.0o incline, where the coefficients of static and kinetic friction are 0.20 and 0.10 respectively. Determine how far up the incline the block will slide, and if the block will slide back down or remain stationary on the incline (use a force analysis to determine this)
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0...
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0 meters per second. The block then encounters a 35.0o incline, where the coefficients of static and kinetic friction are 0.20 and 0.10 respectively. Determine how far up the incline the block will slide, and if the block will slide back down or remain stationary on the incline (use a force analysis to determine this).
A block of mass 200g is sitting on top of another block of three times that...
A block of mass 200g is sitting on top of another block of three times that mass which is on a horizontal frictionless surface and is attached to a horizontal spring. The coefficient of static friction between the blocks is 0.2. The lower block is pulled until the attached spring is stretched by 5.0cm and is then released from rest. Find the maximum value of the spring constant for which the upper block does not slip on the lower block.
A block of mass 2 kg that sits on a horizontal table is connected to a...
A block of mass 2 kg that sits on a horizontal table is connected to a block of mass 6 kg that sits on a ramp of angle 34 ⁰down from the horizontal by a massless string that runs over a pulley in the shape of a solid disk having radius 0.93 m and mass 10 kg. The coefficient of friction for both blocks is 0.256. (a) What is the acceleration of the blocks? (b) The tension in the string...
A 30 kg block is put on a ramp of angle θ = 30o with coefficients...
A 30 kg block is put on a ramp of angle θ = 30o with coefficients of static friction 0.3 and kinetic friction 0.2; a force F1 = 150N is applied to the block to try to stop it from sliding down, but the force is applied directed at an angle of θ1 = 60o counterclockwise from the ramp upward incline a) On the drawing draw the forces and their components b) Derive the formula for the Normal force and...
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of...
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of mass 2.32 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.220. The bullet remains embedded in the block slides along the surface before stopping. What distance does the block slide before coming to rest?
At an Amazon shipping center, a box of cups of mass 2.6 kg rests on top...
At an Amazon shipping center, a box of cups of mass 2.6 kg rests on top of a box of dishes of mass 5.5 kg. The boxes are stacked on a rolling conveyer system that is essentially frictionless. However, the coefficient of static friction between the boxes is μs=0.45μs=0.45. What is the maximum horizontal force that can be applied to the upper box so that the boxes accelerate together, without the upper box sliding on the lower one?
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT