Question

An object is 20.0 cm from a converging lens, and the image falls on a screen....

An object is 20.0 cm from a converging lens, and the image falls on a screen. When the object is moved 3.00 cm closer to the lens, the screen must be moved 3.10 cm farther away from the lens to register a sharp image. Determine the focal length of the lens.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object is placed 53.5 cm from a screen. (a) Where should a converging lens of...
An object is placed 53.5 cm from a screen. (a) Where should a converging lens of focal length 9.0 cm be placed to form an image on the screen? shorter distance_________cm from the screen farther distance___________cm from the screen (b) Find the magnification of the lens. magnification if placed at the shorter distance ________ magnification if placed at the farther distance__________
When an object is placed 70.0 cm from a certain converging lens, it forms a real...
When an object is placed 70.0 cm from a certain converging lens, it forms a real image. When the object is moved to 32.0 cm from the lens, the image moves 9.00 cm farther from the lens. Find the focal length of the lens.
Distance between object and screen is fixed and equal 120 cm. The converging lens of focal...
Distance between object and screen is fixed and equal 120 cm. The converging lens of focal lengths 35 cm is positioned between object and screen in attempts to get clear image on the screen. Based on the data given we may conclude that: There are two positions of lens which will provide sharp image on the screen. There is one position of the lens which will provide sharp image on the screen. No position of the lens will provide sharp...
An object is placed 20.0 cm to the left of a converging lens with focal length...
An object is placed 20.0 cm to the left of a converging lens with focal length of 10.0cm. A second identical, lens is placed to the right of the first lens and moved until the final image produced is identical in size and orientation to the object. What is the separation between the two lenses?
For a particular converging lens, an object a certain distance to the left of the lens...
For a particular converging lens, an object a certain distance to the left of the lens produces a clear image on a a screen a distance 30.2 cm to the right of the lens. When a second lens is placed 15.4 cm to the right of the first lens, the screen has to be moved 18.7 cm to the right of its previous location to produce a clear image. Determine the focal length of the second lens.
An object 2.00 cm high is placed 31.1 cm to the left of a converging lens...
An object 2.00 cm high is placed 31.1 cm to the left of a converging lens having a focal length of 26.1 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) Find final position in...
A converging lens of focal length f is placed between an object and a screen located...
A converging lens of focal length f is placed between an object and a screen located a distance d to the right of the object. Given that 4f < d, find the largest of two possible locations in cm for the lens as measured from the object so that a sharp image is formed on the screen. (Input your answer in 2 significant figures without unit)
A thin convex lens is used to form a real image of an object placed between...
A thin convex lens is used to form a real image of an object placed between the focal point and the lens. The object is moved closer to the lens. The new image: Is closer to the lens and larger. Is farther away from the lens and smaller. Is closer to the lens and smaller. Is farther away from the lens and lager. More information is needed to work out the answer.
A converging lens of focal length 7.97 cm is 20.0 cm to the left of a...
A converging lens of focal length 7.97 cm is 20.0 cm to the left of a diverging lens of focal length -6.00 cm. A coin is placed 11.7 cm to the left of the converging lens. a) Calculate the location of the coin's final image. b) Calculate the magnification of the coin's final image.
A converging lens of focal length 8.080 cm is 20.0 cm to the left of a...
A converging lens of focal length 8.080 cm is 20.0 cm to the left of a diverging lens of focal length -6.91 cm . A coin is placed 12.1 cm to the left of the converging lens. di =   cm to the right of the diverging lens Find the magnification of the coin's final image. m=
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT