Question

After being created in a high-energy particle accelerator, a pi meson at rest has an average...

After being created in a high-energy particle accelerator, a pi meson at rest has an average lifetime of 2.60 10-8 s. Traveling at a speed very close to the speed of light, a pi meson travels a distance of 148 m before decaying. How fast is it moving? (Enter your answer to four significant figures.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An unstable high-energy particle is created in the laboratory, and it moves at a speed of...
An unstable high-energy particle is created in the laboratory, and it moves at a speed of 0.993c. Relative to a stationary reference frame fixed to the laboratory, the particle travels a distance of 1.64 × 10-3 m before disintegrating. What is (a) the proper distance and (b) the distance measured by a hypothetical person traveling with the particle? Determine the particle's (c) proper lifetime and (d) its dilated lifetime. Limit your answer to 3 significant digits.
A lab worker is watching a bunch of particles zing through her particle accelerator. She observes...
A lab worker is watching a bunch of particles zing through her particle accelerator. She observes one particle that's moving at 61% of the speed of light for its whole life, and she sees that it travels a certain distance before decaying. How fast would a second particle need to be traveling for its entire life if the lab worker is to see this second particle travel twice as far as the first? Assume all particles in this problem would...
An unstable high-energy particle is created in the laboratory, and it moves at a speed of...
An unstable high-energy particle is created in the laboratory, and it moves at a speed of 0.989c. Relative to a stationary reference frame fixed to the laboratory, the particle travels a distance of 3.16 × 10-3 m before disintegrating. What is (a) the proper distance and (b) the distance measured by a hypothetical person traveling with the particle? Determine the particle's (c) proper lifetime and (d) its dilated lifetime.
A particle X at rest is a cube of rest-mass m and side L and has...
A particle X at rest is a cube of rest-mass m and side L and has a proper lifetime τ. If the particle is moving with speed √3c/2 with respect to the lab frame (c is the speed of light): Determine a) The total energy of the particle in the lab frame. b) The average distance the particle travels in the lab before decaying. c) Sketch the shape and dimensions of the particle when viewed perpendicular to its motion in...
Two particles are created in a high-energy accelerator and move off in opposite directions. The speed...
Two particles are created in a high-energy accelerator and move off in opposite directions. The speed of one particle, as measured in the laboratory, is 0.690c, and the speed of each particle relative to the other is 0.940c. What is the speed of the second particle, as measured in the laboratory?
Mass of a Moving Particle The mass m of a particle moving at a velocity v...
Mass of a Moving Particle The mass m of a particle moving at a velocity v is related to its rest mass m0 by the equation m = m0 1 − v2 c2 where c (2.98 ✕ 108 m/s) is the speed of light. Suppose an electron of rest mass 9.11 ✕ 10−31 kg is being accelerated in a particle accelerator. When its velocity is 2.84 ✕ 108 m/s and its acceleration is 2.49 ✕ 105 m/s2, how fast is...
A muon is a type of unstable subatomic particle. When high-speed particles from outer space (sometimes...
A muon is a type of unstable subatomic particle. When high-speed particles from outer space (sometimes called "cosmic rays") collide with atoms in the upper atmosphere, they can create muons which travel toward the Earth. Suppose a muon created in the atmosphere travels at a speed of 0.941c toward the Earth's surface for a distance of 3.48 km, as measured by a stationary observer on Earth, before decaying into other particles. (a) As measured by the stationary observer on Earth,...
A particle is traveling with respect to an observer such that its Einsteinian energy is 2.32...
A particle is traveling with respect to an observer such that its Einsteinian energy is 2.32 times its rest energy. How fast is it moving with respect to the observer? Answer in units of the speed of light, and to three decimal places, for example if the answer is 0.123 c report 0.123.
The Large Electron-Positron Collider (LEP) was an accelerator at CERN, the International particle physics laboratory in...
The Large Electron-Positron Collider (LEP) was an accelerator at CERN, the International particle physics laboratory in Europe. As its name implies, at LEP electrons (e- with mass of 0.51 MeV/c2) were collided close to head-on with their anti-particle, positrons (e+ with the same mass). Each of these particles was accelerated to an energy of 104.5 GeV by the time they collided. What is the Lorentz factor $\gamma$ of an electron at this energy? How fast as a fraction of the...
A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is...
A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is created and decays in a particle track detector. It leaves a track 35 mm long. (a) What is the (i) speed of the particle in terms of c? (ii) momentum of the particle? (b) How much energy is needed to produce the particle? (c) Is the particle massless? Justify your answer. (d) Supported by evidence, give your arguments to the beliefs that the (i)...