Question

A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is...

A particle has rest energy 1872 MeV and mean lifetime 8.2 × 10−11 s. It is created and decays in a particle track detector. It leaves a track 35 mm long.

(a) What is the

(i) speed of the particle in terms of c?

(ii) momentum of the particle?

(b) How much energy is needed to produce the particle?

(c) Is the particle massless? Justify your answer.

(d) Supported by evidence, give your arguments to the beliefs that the

(i) total energy of the particle is equal to its kinetic energy.

(ii) particle will eventually reach the speed of light if it is continuously accelerated

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling in opposite direction at a speed of 0.99999*ccollide to form a new particle with a huge mass in the lab. A) What is the total energy of the two particles?   B) What is their Kinetic energy at that speed? C) What is the momentum of the two particles? D) What is the rest mass of the new particle discovered?
Each alpha particle in a beam of alpha particles has a kinetic energy of 5.0 MeV....
Each alpha particle in a beam of alpha particles has a kinetic energy of 5.0 MeV. Through what potential difference would you have to accelerate these alpha particles in order that they would have enough energy so that if one is fired head-on at a gold nucleus it could reach a point 1.0x10^-14 m from the center of the nucleus? I know that the answer is delta V = 9e6 Volts I am struggling to get past KEi = 5.0...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...