Question

Consider a reaction that is first order with respect to component A. In 30 minutes, A...

Consider a reaction that is first order with respect to component A. In 30 minutes, A decreases from 0.55 to 0.15 mol/L. What will be the time required for A to decrease from 0.35 to 0.15 mol/L?

a) 19.6 min

b) 45.1 min

c) 19.1 min

d) 10.4 min

e) 11.2 min

please show solution

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The...
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.892 M to 0.505 M in 3.05 minutes. What is the half-life, in seconds, of this reaction? b) The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its activation energy is 49.5 kJ/mol. When the concentration of A(aq) is 0.100 M and the temperature is 25.0oC, the rate of reaction is 0.333...
The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration...
The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.810 M to 0.585 M in 3.24 minutes. What is the half-life, in seconds, of this reaction? The temperature is 25oC.
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq)....
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.822 M to 0.576 M in 3.16 minutes. What is the half-life, in seconds, of this reaction? Question 6: The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq). The half-life of A(aq) is 93.2 s at 25.0oC and its half-life is 60.9 s at 75.0oC. What is its half-life at...
For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to...
For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to decrease to 25% of its initial value. What is the value for rate constant (in s-1) for the reaction? Select one: A. 4.8 × 10-4 s-1 B. 6.0 × 10-3 s-1 C. 1.0 × 10-4 s-1 D. 2.9 × 10-2 s-1 For the first-order reaction, 2 N2O(g) → 2 N2(g) + O2(g), what is the concentration of N2O after 3 half-lives if 0.15 mol...
Urea decomposes as a first order in respect to urea and as a first order overall...
Urea decomposes as a first order in respect to urea and as a first order overall reaction. The decomposition of urea in a 0.16M HCl occurs according to:     NH2CONH2 (aq)   +   H+ (aq)   +   2 H2O (l)                             2 NH4+ (aq) + HCO3- (aq) When [NH2CONH2] = 0.250 M, the rate at 60.5°C is 8.45 × 10-5 M/s. What is the rate constant? What is the concentration of urea in this solution after 5.00 × 103 sec? What is the...
The rate constant of a first-order reaction is 0.0032 x 10-4 L/mol *s at 640 K....
The rate constant of a first-order reaction is 0.0032 x 10-4 L/mol *s at 640 K. If the activation energy is 176,406J/mol, calculate the temperature at which is rate constant is 0.0039 x10 -4 L/mol*s. Show your work please.
A gas-phase decomposition is first-order with respect to the reactant, R. If the initial concentration of...
A gas-phase decomposition is first-order with respect to the reactant, R. If the initial concentration of R is 1.0 ´ 10-4 mol L-1 and the rate constant k = 1.08 ´ 10-6 s-1, what concentration of R remains after 25 days? *show all work, explanations, and calculations
Consider the reaction which is third order overall but first order in each of three concentrations....
Consider the reaction which is third order overall but first order in each of three concentrations. If the concentration of two of the species are very large compared to that of the third, with what functional form will the concentration of the third species decrease in time?
The decomposition of A to B is a first-order reaction with a half-life of 85.9 min...
The decomposition of A to B is a first-order reaction with a half-life of 85.9 min when the initial concentration of A is 0.483 M: A → 2B How long will it take for this initial concentration of A to decrease by 23.0%? PLEASE HURRY I DONT HAVE MUCH TIME TO ANSWER THIS
Consider the CSTR with first order reaction and the process parameters and variables are given by:...
Consider the CSTR with first order reaction and the process parameters and variables are given by: The process parameters and variables are defined as: CA0 = feed concentration = 2.7 mol/L. Cp = heat capacity of the reactor feed and product (1000 cal/kg*K) = Cv. E/R = normalized activation energy (20,000 K). F = mass feed rate and product rate (10 kg/s). k0 = rate constant (1.97×10^24 1/s). Q = heat addition rate (initially 700,000 cal/s). T0 = feed temperature...