Question

For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to...

For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to decrease to 25% of its initial value. What is the value for rate constant (in s-1) for the reaction?

Select one:

A. 4.8 × 10-4 s-1

B. 6.0 × 10-3 s-1

C. 1.0 × 10-4 s-1

D. 2.9 × 10-2 s-1

For the first-order reaction, 2 N2O(g) → 2 N2(g) + O2(g), what is the concentration of N2O after 3 half-lives if 0.15 mol of N2O is initially placed into in a 1.00-L reaction vessel?

Select one:

A. 9.4 × 10-3 M

B. 7.5 × 10-2 M

C. 3.8 × 10-2 M

D. 1.9 × 10-2 M

Which statement below regarding the half-life of a second-order reaction is true?

Select one:

A. The length of the half-life remains unchanged throughout the course of the reaction.

B. Each half-life is half as long as the preceding one.

C. Each half-life is four times as long as the preceding one.

D. Each half-life is twice as long as the preceding one.

Homework Answers

Answer #1

Please post the remaining question as a new question

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1A. For a first order reaction, the rate will double if a.      Concentration of a reactant...
1A. For a first order reaction, the rate will double if a.      Concentration of a reactant is doubled b.     Concentration of a product is doubled c.      Concentration of a reactant is squared d.     Temperature is raised two degrees e.    2 moles of catalyst are added 1B.     For a second order decomposition reaction (one reactant), if the concentration of the reactant is tripled, the rate: a.      Triples b.     Increases nine-fold c.      Decreases by one third d.     Stays the same
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
C) The reactant concentration in a first-order reaction was 8.40×10−2 M after 30.0 s and 1.50×10−3...
C) The reactant concentration in a first-order reaction was 8.40×10−2 M after 30.0 s and 1.50×10−3 M after 100 s . What is the rate constant for this reaction? D)The reactant concentration in a second-order reaction was 0.320 M after 250 s and 7.40×10−2 M after 750 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Include an asterisk to indicate a compound unit with mulitplication, for example write a Newton-meter as...
Suppose a reaction with a single reactant is first order in that reactant. As a first-order...
Suppose a reaction with a single reactant is first order in that reactant. As a first-order reaction, the concentration of the reactant will decrease exponentially with time, and its half-life will be constant. Does the fraction of molecules that react per unit time change as the reaction progresses? Justify your answer. please justify with words and not just equations.
The reactant concentration in a first-order reaction was 7.40×10−2 M after 10.0 s and 9.70×10−3 M...
The reactant concentration in a first-order reaction was 7.40×10−2 M after 10.0 s and 9.70×10−3 M after 100 s . What is the rate constant for this reaction?The reactant concentration in a second-order reaction was 0.800 M after 180 s and 1.60×10−2 M after 890 s . What is the rate constant for this reaction?
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its inital value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation caculates the time...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M...
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M after 305 s . What is the rate constant for this reaction? (I got this answer 3.10*10^-4 M/s) What was the initial reactant concentration for the reaction described in Part A? The reactant concentration in a first-order reaction was 0.100 M after 40.0 s and 3.80×10−3M after 90.0 s . What is the rate constant for this reaction? (I got this answer 6.54*10^-2 1/s)...