Question

The photo booth at the Apple County fair takes snapshots in exactly 90 seconds (constant rate)....

The photo booth at the Apple County fair takes snapshots in exactly 90 seconds (constant rate). Customers arrive at the machine according to a Poisson distribution at the mean rate of 20 per hour. Using this information, determine the following:

a. the average number of customers waiting to use the photo machine

b. the average time a customer spends in the system

c. the probability an arriving customer must wait for service.

Homework Answers

Answer #1

Average arrival rate, λ = 20 per hr.
Constant service rate, μ = 1 in 90 seconds = (3600/90) = 40 per hr.

(a)

The average number of customers waiting, Lq = λ2 / {2μ.(μ - λ)} = (20^2) / (2*40*(40 - 20)) = 0.25

(b)

The average number of customers in the system, Ls = Lq + λ/μ = 0.25 + 20/40 = 0.75

The average time a customer spends in the system, Ws = Ls / λ = 0.75 / 20 = 0.0375 hrs. = 2.25 minutes

(c)

Probability that an arriving customer waits = λ/μ = 20/40 = 0.50

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Quick Snap photo machine at the Lemon County bus station takes snapshots in exactly 80...
The Quick Snap photo machine at the Lemon County bus station takes snapshots in exactly 80 seconds. Customers arrive at the machine according to a Poisson distribution at the mean rate of 15 per hour. On the basis of this information, determine the following: a. the average number of customers waiting to use the photo machine b. the average time a customer spends in the system c. the probability an arriving customer must wait for service.
An automatic roller coaster ride takes a constant time of 2.5 minutes to complete a ride....
An automatic roller coaster ride takes a constant time of 2.5 minutes to complete a ride. Customers arrive at the facility every 2.75 minutes (exponentially distributed). Report answers to 4 decimal places. a. Determine the average waiting time in the queue (in minutes). b. The local bank drive-through teller window can serve a customer at an average of 4.5 minutes per customer (exponentially distributed). Customers arrive in their cars at a rate of 12 per hour (poisson distributed). Determine the...
Many of a bank’s customers use its automatic teller machine to transact business after normal banking...
Many of a bank’s customers use its automatic teller machine to transact business after normal banking hours. During the early evening hours in the summer months, customers arrive at a certain location at the rate of one every other minute. This can be modeled using a Poisson distribution. Each customer spends an average of 94 seconds completing his or her transactions. Transaction time is exponentially distributed. a. Determine the average time customers spend at the machine, including waiting in line...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5 hour (repair time) =2.5 hours With m = 1/ 2.5 = 0.4 hours per customers ** PLEASE SHOW HOW TO DO EQUATION ** OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line,...
If the average arrival rate is 10 per hour, and the average time it takes to...
If the average arrival rate is 10 per hour, and the average time it takes to help a customer is 5 minutes, then: Group of answer choices No customer will ever have to wait: we can help more customers per hour than arrive Utilization is less than 100%: we can help more customers per hour than arrive, but we may have a queue form and customers might have to wait.. None of the other answers are correct There can never...
*please use excel and provide the formulas Customers arrive randomly at a product returns counter at...
*please use excel and provide the formulas Customers arrive randomly at a product returns counter at a department store, which meets the assumptions of the Single-Server, Single-Phase waiting line model (i.e., the arrival rate is Poisson distributed and service rate is exponentially distributed). There is only one returns employee, and the time required for returns varies from customer to customer. There is a single waiting line. The average arrival rate is 15 customers per hour. The average time to serve...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Exercise 11.2.5 Customers arrive at Bunkey’s car wash service at a rate of one every 20...
Exercise 11.2.5 Customers arrive at Bunkey’s car wash service at a rate of one every 20 minutes and the average time it takes for a car to proceed through their single wash station is 8 minutes. Answer the following questions under the assumption of Poisson arrivals and exponential service. (a) What is the probability that an arriving customer will have to wait? (b) What is the average number of cars waiting to begin their wash? (c) What is the probability...
The customer support hotline for Bitway Computers is currently staffed by a single technician. Calls arrive...
The customer support hotline for Bitway Computers is currently staffed by a single technician. Calls arrive randomly at a rate of five per hour and follow a Poisson distribution. The technician can service calls at an average rate of seven per hour, but the actual time required to handle a call is an exponential random variable. The president of Bitway has received numerous complaints from customers about the length of time they must wait “on hold” for service when calling...