Question

The mileage of a stationary twin cylinder petrol engine generating output power at 03 a rate...

The mileage of a stationary twin cylinder petrol engine generating output power at 03 a rate of 10kW per liter of stroke volume is 0.257 kg/kWh. Determine the efficiency of conversion of combustion heat energy into useful power inside the cylinder if the volume of charge after compression is 0.2 liters in each cylinder. The engine is operating with a compression ratio of 11:1 and the fuel has a calorific value of 44MJ/kg. The crank case of the engine is designed to have a capacity of
4 liters in order to receive the incoming fresh air-fuel mixture. The total number of
firings for both the cylinders are 120000 per hour. Assume mean effective pressure
2 as 1N/mm

Homework Answers

Answer #1

efficiency of conversion of combustion heat energy into useful power inside the cylinder will be 31.83%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. A twin-cylinder 2-stroke engine has a swept volume of 150 cm3 . The maximum power...
. A twin-cylinder 2-stroke engine has a swept volume of 150 cm3 . The maximum power output is 19 kW at 11,000 rpm. At this condition, the bsfc is .11kg/MJ and the gravimetric air/fuel ratio is 12:1. If ambient test conditions are 10 C, 1.03 bar and the fuel has a calorific value of 44 MJ/kg, calculate the bmep, the arbitrary overall efficiency and the volumetric efficiency.
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as follows: IMEP: 31 bar at peak power bsfc:    233 g/kWh isfc:     205 g/kWh Bore to stroke ratio:    1..04 Number of cylinders: 4 Maximum mean piston speed: 24 m/s Compression ratio: 10:1 Simulation results indicate that the indicated work per cylinder per cycle needs to be 1400 J/cyl/cyc. Based on the provided information, finalize the engine design for the following parameters: Bore and stroke (mm)...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as follows: IMEP: 31 bar at peak power bsfc:    233 g/kWh isfc:     205 g/kWh Bore to stroke ratio:    1..04 Number of cylinders: 4 Maximum mean piston speed: 24 m/s Compression ratio: 10:1 Simulation results indicate that the indicated work per cylinder per cycle needs to be 1400 J/cyl/cyc. Based on the provided information, finalize the engine design for the following parameters: Bore and stroke (mm)...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as follows: IMEP: 28 bar at peak power bsfc:    242 g/kWh isfc:     210 g/kWh Bore to stroke ratio:    1.17 Number of cylinders: 4 Maximum mean piston speed: 18 m/s Compression ratio: 11:1 Simulation results indicate that the indicated work per cylinder per cycle needs to be 1330 J/cyl/cyc. Based on the provided information, finalize the engine design for the following parameters: Bore and stroke (mm)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT