Question

A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as...

A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as follows:

  1. IMEP: 31 bar at peak power
  2. bsfc:    233 g/kWh
  3. isfc:     205 g/kWh
  4. Bore to stroke ratio:    1..04
  5. Number of cylinders: 4
  6. Maximum mean piston speed: 24 m/s
  7. Compression ratio: 10:1
  8. Simulation results indicate that the indicated work per cylinder per cycle needs to be 1400 J/cyl/cyc.

Based on the provided information, finalize the engine design for the following parameters:

  1. Bore and stroke (mm)
  2. Engine displacement (litre)
  3. Engine Speed at peak power (rpm)
  4. Peak brake power (kW)
  5. Fuel flow rate at peak power (kg/hr)
  6. The minimum cylinder volume (cm3)

Homework Answers

Answer #1

The solution of the given problem is shown in below:-

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as...
A high performance 4 stroke supercharged gasoline engine is being designed. The target specifications are as follows: IMEP: 31 bar at peak power bsfc:    233 g/kWh isfc:     205 g/kWh Bore to stroke ratio:    1..04 Number of cylinders: 4 Maximum mean piston speed: 24 m/s Compression ratio: 10:1 Simulation results indicate that the indicated work per cylinder per cycle needs to be 1400 J/cyl/cyc. Based on the provided information, finalize the engine design for the following parameters: Bore and stroke (mm)...
a six-cylinder four stroke automobile engine is being designed to produce 75 kW at 2000 rpm...
a six-cylinder four stroke automobile engine is being designed to produce 75 kW at 2000 rpm with a bsfc of 300 g/kWh and a bmep of 12 bar. the engine is to have equal bore and stroke, and fueled with gasoline with a heat of combustion of 44510 kj/kg. (a) what should be the deisng displacement volume and bore? (b) what is the fuel consumption per cycle per cylinder? (c) what is the brake thermal efficiency?
1. An eight-cylinder, two stroke cycle diesel engine with 13.6 cm bore and 16.1 cm stroke...
1. An eight-cylinder, two stroke cycle diesel engine with 13.6 cm bore and 16.1 cm stroke produces 97 kW of brake power at 2800 RPM. Compression ratio rc = 15.5:1
Calculate: * a) Engine displacement [m3 and cm3] 
 * b) Torque [N-m] 
 * c) Brake mean effective pressure [kPa] 
 * d) Clearance volume of one cylinder [m3 and cm3] 

A 4 cylinder 4 stroke 3.2 L diesel engine with bore = 11 cm and stroke...
A 4 cylinder 4 stroke 3.2 L diesel engine with bore = 11 cm and stroke =12.4 cm. the crank radius is 5.5 cm and with a connecting rod length 15 cm. the compression ratio of the engine is 21 and the combustion efficiency is 96.3 %. If the average speed of the car over the running life of the engine is 65 km/h and the total traveled distance of the engine is 250000 km. note: use the engine speed...
A four-cylinder, four-stroke engine is built into an automobile. Within each cylinder of the engine, the...
A four-cylinder, four-stroke engine is built into an automobile. Within each cylinder of the engine, the processes can be modeled as an air-standard Otto cycle. At the beginning of the compression process, the cylinder volume is .559 L. The temperature and pressure are 330 K and 1.5 bar, respectively. In the cycle, the maximum temperature is 2200 K when the engine operates at 3000 RPM. (4-stroke engine, 2 rotations per cycle, MW of air = 28.97 kg/kmol) If the engine...
For a 1.6 liter 4-cylinder engine operating at wide-open throttle at 2500 RPM, the stroke/bore S/B...
For a 1.6 liter 4-cylinder engine operating at wide-open throttle at 2500 RPM, the stroke/bore S/B = 1.0 and connecting rod length/crank throw, l/a = 4. a.Estimate the time for intake, compression, combustion, power and exhaust processes for this typical engine. Describe/justify the assumptions that you make. b.Estimate the maximum velocity in the intake port. Assume port area is 20% of piston area. c.Estimate the average velocity of the flame as it travels across the combustion chamber. Describe and justify...
. A twin-cylinder 2-stroke engine has a swept volume of 150 cm3 . The maximum power...
. A twin-cylinder 2-stroke engine has a swept volume of 150 cm3 . The maximum power output is 19 kW at 11,000 rpm. At this condition, the bsfc is .11kg/MJ and the gravimetric air/fuel ratio is 12:1. If ambient test conditions are 10 C, 1.03 bar and the fuel has a calorific value of 44 MJ/kg, calculate the bmep, the arbitrary overall efficiency and the volumetric efficiency.
In case your selection was a gasoline engine, evaluate the performance of a four-cylinder four-stroke engine...
In case your selection was a gasoline engine, evaluate the performance of a four-cylinder four-stroke engine that operates on the ideal Otto cycle and has a compression ratio of 11. At the beginning of the compression process, the air is at 90 kPa and 27°C, and 500 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Accounting for the variation of specific heats of air with temperature, determine the required power the engine will deliver at 3000...