Question

initially air is at 250C and 300 kpa it is compressed isothermally such that its new...

initially air is at 250C and 300 kpa it is compressed isothermally such that its new volume 1/8th of the original volume. Determine the final pressure and work done on air

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air that initially occupies 0.72 m3 at a gauge pressure of 140 kPa is expanded isothermally...
Air that initially occupies 0.72 m3 at a gauge pressure of 140 kPa is expanded isothermally to a pressure of 101.3 kPa and then cooled at constant pressure until it reaches its initial volume. Compute the work done by the air. (Gauge pressure is the difference between the actual pressure and atmospheric pressure.)
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process,...
0.5 kilograms of air are compressed from 100 kPa and 300 K in a polytropic process, n = 1.3, to a state where V2 = 0.5 V1. The air is further compressed at constant pressure until the final volume is 0.2 V1 . Draw a sketch of the processes on a p-V diagram. Determine the work for each process.
An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 120 kPa pressure and...
An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 120 kPa pressure and is heated at constant volume until its pressure has doubled. It's then compressed adiabatically until its volume is one-fourth its original value, then cooled at constant volume to 300 K , and finally allowed to expand isothermally to its original state. Find the net work done on the gas. W= ___J
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1)....
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1). A total of 700 kJ of work is done ON the water in order to isothermally reduce its volume to 1/20 of its initial volume (state 2). Determine the magnitude and direction of the heat transfer involved in this process. Answer: -1147 kJ.
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 100 kPa...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 100 kPa pressure. It is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to its initial state. a.) Find the net work done on the gas. b.) Find the minimum volume reached.
One mole of air is compressed from pressure P1 and temperature T1 at constant volume till...
One mole of air is compressed from pressure P1 and temperature T1 at constant volume till its pressure is doubled. Then it is expanded reversibly and isothermally to the original pressure, and finally restored to the original temperature by cooling at constant pressure. Sketch the path followed by the gas, on a P-V diagram and calculate the net work done by the gas.
An ideal gas with ?=1.4 occupies 3.0L at 300 Kand 100kPa pressure and is compressed adiabatically...
An ideal gas with ?=1.4 occupies 3.0L at 300 Kand 100kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to stateA. Find the net work done on the gas and Vmin?
An isentropic compressor that takes in air from the atmosphere at 100 kPa and 300 K...
An isentropic compressor that takes in air from the atmosphere at 100 kPa and 300 K compresses it to 1 MPa. The compressor feeds into a rigid tank that is initially filled with 5 kg of air at a pressure of 500 kPa and a temperature of 500 K. Once the mass in the tank reaches 8 kg, the compressor will stop to prevent the tank from rupturing, which will occur if the pressure exceeds 1000 kPa. a) Determine the...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT