Question

An open top box is to be made by cutting small congruent squares from each corner...

An open top box is to be made by cutting small congruent squares from each corner of a 12x12in sheet of cardboard and folding up sides. Whag dimensions would yield max volume, using calculus?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Metal Fabrication By cutting away identical squares from each corner of a rectangular piece of cardboard...
Metal Fabrication By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 24 in. long and 9 in. wide, find the dimensions of the box that will yield the maximum volume.
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding...
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 10 in. wide, find the dimensions of the box that will yield the maximum volume. (Round your answers to two decimal places.) _____ in (smallest value) _____ in ______in(largest value)
A box with an open top is made from a square sheet of cardboard with an...
A box with an open top is made from a square sheet of cardboard with an area of 10,000 square in. by cutting out squares from the corners and folding up the edges. Find the maximum volume of a box made this way. (draw a picture).
You are planning to make an open rectangular box from a 19in by 37 ​-in. piece...
You are planning to make an open rectangular box from a 19in by 37 ​-in. piece of cardboard by cutting congruent squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this​ way, and what is its​ volume? The dimensions of the box of the maximum volume are
You are planning to make an open rectangular box from a 9in by 17in piece of...
You are planning to make an open rectangular box from a 9in by 17in piece of cardboard by cutting congruent squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this​ way, and what is its​ volume?
A piece of cardboard measuring 11 inches by 10 inches is formed into an open-top box...
A piece of cardboard measuring 11 inches by 10 inches is formed into an open-top box by cutting squares with side length x from each corner and folding up the sides. Find a formula for the volume of the box in terms of x V ( x ) = (11-2x)(10-2x)(x) Find the value for x that will maximize the volume of the box x =
A rectangular box with an open top is to be made from a 13 -in.-by- 48...
A rectangular box with an open top is to be made from a 13 -in.-by- 48 -in. piece of cardboard by removing small squares of equal size from the corners and folding up the remaining flaps. What should be the size of the squares cut from the corners so that the box will have the largest possible volume?
A sheet of paper 64 cm-by-68 cm is made into an open box (i.e. there's no...
A sheet of paper 64 cm-by-68 cm is made into an open box (i.e. there's no top), by cutting x-cm squares out of each corner and folding up the sides. Find the value of x that maximizes the volume of the box. Give your answer in the simplified radical form.
An open box is formed from a piece of 8 by 10 inch cardboard by cutting...
An open box is formed from a piece of 8 by 10 inch cardboard by cutting out corners and folding up the sides. Find the maximum volume of the box formed this way and give the dimensions.
An open box is made out of a 10-inch by 18-inch piece of cardboard by cutting...
An open box is made out of a 10-inch by 18-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up at the sides. find the dimensions of the resulting box that has the largest volume. asking for: Dimensions of the bottom of the box: _ * _ height of box:
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT