Question

A piece of cardboard measuring 11 inches by 10 inches is formed into an open-top box...

A piece of cardboard measuring 11 inches by 10 inches is formed into an open-top box by cutting squares with side length x from each corner and folding up the sides. Find a formula for the volume of the box in terms of x V ( x ) = (11-2x)(10-2x)(x)

Find the value for x that will maximize the volume of the box x =

Homework Answers

Answer #1

if it is right than like it please give rating

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An open box is formed from a piece of 8 by 10 inch cardboard by cutting...
An open box is formed from a piece of 8 by 10 inch cardboard by cutting out corners and folding up the sides. Find the maximum volume of the box formed this way and give the dimensions.
A piece of cardboard is twice as long as it is wide. It is to be...
A piece of cardboard is twice as long as it is wide. It is to be made into a box with an open top by cutting 2 cm squares from each corner and folding up the sides. Let x represent the width of the original piece of cardboard. Find the width of the original piece of cardboard,x, if the volume of the box is 1120 cm^3
A box (with no top) is to be constructed from a piece of cardboard of sides...
A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if A=6 and B=7.
A 10-inch square piece of metal is to be used to make an open-top box by...
A 10-inch square piece of metal is to be used to make an open-top box by cutting equal-sized squares from each corner and folding up the sides. The length, width, and height of the box are each to be less than 7 inches. What size squares should be cut out to produce a box with volume 50 cubic inches? What size squares should be cut out to produce a box with largest possible volume?
Problem: A box with an open top is to be constructed from a square piece of...
Problem: A box with an open top is to be constructed from a square piece of cardboard, with sides 6 meters in length, by cutting a square from each of the four corners and bending up the sides. Find the dimensions that maximize the volume of the box and the maximum volume.
An open box is to be made from a 16-inch by 30-inch piece of cardboard by...
An open box is to be made from a 16-inch by 30-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume? a. Draw and label the diagram that shows length x and width y of the box. b. Find the volume formula in terms of x. c. Find the x value for which the rectangle has...
A rectangular piece of cardboard measuring 14 cm by 12 cm is made into an open...
A rectangular piece of cardboard measuring 14 cm by 12 cm is made into an open box by cutting squares from the corners and turning up the sides. The volume of the box is 144 cm3 . Find the dimensions of the box. Include an algebraic solution for full marks.
An open box is to be made from a 2-meters by 6-meters piece of cardboard by...
An open box is to be made from a 2-meters by 6-meters piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. Find the dimensions of the box that would give the largest volume? Justify your answer by displaying all work. Make sure to display the proper formulas for the length and width in terms of x.
A box with an open top is to be constructed from a square piece of cardboard,...
A box with an open top is to be constructed from a square piece of cardboard, 6 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have (round your answer to the nearest thousandth).
An open top box is to be made by cutting small congruent squares from each corner...
An open top box is to be made by cutting small congruent squares from each corner of a 12x12in sheet of cardboard and folding up sides. Whag dimensions would yield max volume, using calculus?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT