Question

PLEASE explain STEPS. Thank you :) Find the flux of the vector field  F  =  x ...

PLEASE explain STEPS. Thank you :)

Find the flux of the vector field  F  =  xi  +  e6xj  +  zk  through the surface S given by that portion of the plane  6x + y + 3z  =  9  in the first octant, oriented upward. (a clear explained answer would be appreciated)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the flux of the vector field  F  =  x i  +  e6x j  +  z ...
Find the flux of the vector field  F  =  x i  +  e6x j  +  z k  through the surface S given by that portion of the plane  6x + y + 3z  =  9  in the first octant, oriented upward. PLEASE EXPLAIN STEPS. Thank you.
Use the divergence theorem to calculate the flux of the vector field F = (y +xz)...
Use the divergence theorem to calculate the flux of the vector field F = (y +xz) i+ (y + yz) j - (2x + z^2) k upward through the first octant part of the sphere x^2 + y^2 + z^2 = a^2.
Find the flux of the vector field F(x, y, z) = x, y, z through the...
Find the flux of the vector field F(x, y, z) = x, y, z through the portion of the parabaloid z = 16 - x^2-y^2  above the plane ? = 7 with upward pointing normal.
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 4 in the first octant, with orientation toward the origin
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 25 in the first octant, with orientation toward the origin
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i - z j + y k S is the part of the sphere x2 + y2 + z2 = 81 in the first octant, with orientation toward the origin.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 5, 0...
compute the flux of the vector field F through the parameterized surface S. F= zk and...
compute the flux of the vector field F through the parameterized surface S. F= zk and S is oriented upward and given, for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by x = s + t, y = s – t, z = s2 + t2. the answer should be 4/3.
Find the flux of the vector field F (x, y, z) =< y, x, e^xz >...
Find the flux of the vector field F (x, y, z) =< y, x, e^xz > outward from the z−axis and across the surface S, where S is the portion of x^2 + y^2 = 9 with x ≥ 0, y ≥ 0 and −3 ≤ z ≤ 3.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 4 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...