Question

Find the flux of the vector field  F  =  x i  +  e6x j  +  z ...

Find the flux of the vector field  F  =  xi  +  e6xj  +  zk  through the surface S given by that portion of the plane  6x + y + 3z  =  9  in the first octant, oriented upward. PLEASE EXPLAIN STEPS. Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
PLEASE explain STEPS. Thank you :) Find the flux of the vector field  F  =  x ...
PLEASE explain STEPS. Thank you :) Find the flux of the vector field  F  =  x i  +  e6x j  +  z k  through the surface S given by that portion of the plane  6x + y + 3z  =  9  in the first octant, oriented upward. (a clear explained answer would be appreciated)
Find the flux of the vector field F(x, y, z) = x, y, z through the...
Find the flux of the vector field F(x, y, z) = x, y, z through the portion of the parabaloid z = 16 - x^2-y^2  above the plane ? = 7 with upward pointing normal.
Use the divergence theorem to calculate the flux of the vector field F = (y +xz)...
Use the divergence theorem to calculate the flux of the vector field F = (y +xz) i+ (y + yz) j - (2x + z^2) k upward through the first octant part of the sphere x^2 + y^2 + z^2 = a^2.
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 4 in the first octant, with orientation toward the origin
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i − z j + y k S is the part of the sphere x2 + y2 + z2 = 25 in the first octant, with orientation toward the origin
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the...
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i - z j + y k S is the part of the sphere x2 + y2 + z2 = 81 in the first octant, with orientation toward the origin.
compute the flux of the vector field F through the parameterized surface S. F= zk and...
compute the flux of the vector field F through the parameterized surface S. F= zk and S is oriented upward and given, for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by x = s + t, y = s – t, z = s2 + t2. the answer should be 4/3.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 5, 0...
Find the flux of the vector field F (x, y, z) =< y, x, e^xz >...
Find the flux of the vector field F (x, y, z) =< y, x, e^xz > outward from the z−axis and across the surface S, where S is the portion of x^2 + y^2 = 9 with x ≥ 0, y ≥ 0 and −3 ≤ z ≤ 3.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 4 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT