Question

Find the 4th degree, T4 taylor polynomial for f(x)=arctan (x) centered at c=1/2 and use it...

Find the 4th degree, T4 taylor polynomial for f(x)=arctan (x) centered at c=1/2 and use it to aproximate f(x)= arctan (1/16)

Homework Answers

Answer #1

hope this will help you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Find the Taylor polynomial, degree 4, T4, about 1/2 for f (x) = tan-inv (x)...
1. Find the Taylor polynomial, degree 4, T4, about 1/2 for f (x) = tan-inv (x) and use it to approximate tan-inv (1/16). 2. Find the taylor polynomial, degree 4, S4, about 0 for f (x) = tan-inv (x) and use it to approximate tan-inv (1/16). 3. who provides the best approximation, S4 or T4? Prove it.
Find the second degree polynomial of Taylor series for f(x)= 1/(lnx)^3 centered at c=2. Write step...
Find the second degree polynomial of Taylor series for f(x)= 1/(lnx)^3 centered at c=2. Write step by step.
find the fourth degree Taylor polynomail, T4(x), for f(x)=sqr.root(9+x) centered at the point x=0
find the fourth degree Taylor polynomail, T4(x), for f(x)=sqr.root(9+x) centered at the point x=0
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
PART A: Find the Taylor series for ln x centered at x = 5 PART B:...
PART A: Find the Taylor series for ln x centered at x = 5 PART B: Find the second degree Taylor polynomial for f (x) = arctan x centered at x = 0
let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)
let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function...
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function f(x) = (-7x+36)4/3
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3....
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3. T3(x)= ? True False Cannot be determined The function f(x)=(7x−20)4/3 equals its third degree Taylor polynomial T3(x) centered at a=4. Hint: Graph both of them. If it looks like they are equal, then do the algebra.
find the 6th order taylor polynomial for f(x) = xsin(x^2) centered at a=0.
find the 6th order taylor polynomial for f(x) = xsin(x^2) centered at a=0.
Find the Taylor degree 4 polynomial of ? (?) = −? ∗ ??? (?) centered on...
Find the Taylor degree 4 polynomial of ? (?) = −? ∗ ??? (?) centered on 0 and find the interval for which the approximation has a smaller error or than a. ???.