Question

let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)

let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)

Homework Answers

Answer #1

feel free to ask any doubt please. If you don't have any doubt please like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
i) Approximate the function f(x) = cos x by a Taylor polynomial of degree 3 at...
i) Approximate the function f(x) = cos x by a Taylor polynomial of degree 3 at a = π/3 ii) What is the maximum error when π/6 ≤ x ≤ π/2? (this is the continuation of part i))
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function...
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function f(x) = (-7x+36)4/3
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3....
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3. T3(x)= ? True False Cannot be determined The function f(x)=(7x−20)4/3 equals its third degree Taylor polynomial T3(x) centered at a=4. Hint: Graph both of them. If it looks like they are equal, then do the algebra.
Use a 2nd order Taylor polynomial centered at x = 4 to approximate √4.001 You can...
Use a 2nd order Taylor polynomial centered at x = 4 to approximate √4.001 You can leave your answer as the sum or difference of fractions.
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)=...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)= e^ x sin(x) about the point a = 0. (b) Bound the error |f(x) − p3(x)| using the Taylor Remainder R3(x) on [−π/4, π/4]. (c) Let pn(x) be the Taylor Polynomial of degree n of f(x) = cos(x) about a = 0. How large should n be so that |f(x) − pn(x)| < 10^−5 for −π/4 ≤ x ≤ π/4 ?
Find the 4th degree, T4 taylor polynomial for f(x)=arctan (x) centered at c=1/2 and use it...
Find the 4th degree, T4 taylor polynomial for f(x)=arctan (x) centered at c=1/2 and use it to aproximate f(x)= arctan (1/16)
Find the Taylor degree 4 polynomial of ? (?) = −? ∗ ??? (?) centered on...
Find the Taylor degree 4 polynomial of ? (?) = −? ∗ ??? (?) centered on 0 and find the interval for which the approximation has a smaller error or than a. ???.
1. Find the Taylor polynomial, degree 4, T4, about 1/2 for f (x) = tan-inv (x)...
1. Find the Taylor polynomial, degree 4, T4, about 1/2 for f (x) = tan-inv (x) and use it to approximate tan-inv (1/16). 2. Find the taylor polynomial, degree 4, S4, about 0 for f (x) = tan-inv (x) and use it to approximate tan-inv (1/16). 3. who provides the best approximation, S4 or T4? Prove it.
Let f(x, y) = sin x √y. Find the Taylor polynomial of degree two of f(x,...
Let f(x, y) = sin x √y. Find the Taylor polynomial of degree two of f(x, y) at (x, y) = (0, 9). Give an reasonable approximation of sin (0.1)√ 9.1 from the Taylor polynomial of degree one of f(x, y) at (0, 9).