Question

(i) You are given that ?⃗ =〈2 , 3 ,4〉 and ? = 〈−1 , −1...

(i) You are given that ?⃗ =〈2 , 3 ,4〉 and ? = 〈−1 , −1 , 4〉 .

Find a vector ? that is orthogonal to both ?⃗ and ? .

Also find the equation of the plane that is determined by both ?⃗ and ?.

(ii) If ?⃗ and ? are vectors in ?? prove algebraically that ‖ ?⃗ + ? ‖ ≤ ‖ ?⃗ ‖ + ‖ ? ‖ . Interpret the result geometrically.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A (–4, –1, 2), B (3, –2, –1) and C (–1, 3, –4), AB= 7? −...
A (–4, –1, 2), B (3, –2, –1) and C (–1, 3, –4), AB= 7? − ? − 3? CB = 4? − 5? + 3? AC = 3? + 5? - 2? Question 7: Express the vector AC as the sum of two vectors: AC = ? + ?, where ? is parallel to the vector CB and ? is perpendicular to CB. Given that AC ∙ CB = −26 and that CB = √50, determine the y-component of...
1. Given an ellipsoid with equation (x−5)^2 /16 +(y−10)^2/ 9+(z−6)^2/ 16= 1 and the plane with...
1. Given an ellipsoid with equation (x−5)^2 /16 +(y−10)^2/ 9+(z−6)^2/ 16= 1 and the plane with equation y = 19 find an equation for the curve of intersection of the two given surfaces 2.Given vectors a and b, express the vector projection of b onto a, indicated by p=PROJaB. Now use the decomposition b = projab + orthab to solve for orthab, which is the vector component of b which is orthogonal to a.
1. A plane passes through A(1, 2, 3), B(1, -1, 0) and C(2, -3, -4). Determine...
1. A plane passes through A(1, 2, 3), B(1, -1, 0) and C(2, -3, -4). Determine vector and parametric equations of the plane. You must show and explain all steps for full marks. Use AB and AC as your direction vectors and point A as your starting (x,y,z) value. 2. Determine if the point (4,-2,0) lies in the plane with vector equation (x, y, z) = (2, 0, -1) + s(4, -2, 1) + t(-3, -1, 2).
[[[physics]]] You are given vectors A →= 5.5 i^− 6.6 j^ and B→= 3.9 i^+ 7.1...
[[[physics]]] You are given vectors A →= 5.5 i^− 6.6 j^ and B→= 3.9 i^+ 7.1 j^. A third vector C→ lies in the  xy-plane. Vector C→ is perpendicular to vector A→ and the scalar product of C→ with B→ is 19.0. (1) Find the xx -component of vector C→. (2) Find the y-component of vector C→.
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
Find the distance from the point (1, 2, 3) to the (a) XY plane         (b) Y...
Find the distance from the point (1, 2, 3) to the (a) XY plane         (b) Y axis Find a unit vector that is perpendicular to both i + j   and   i - k   Find the equation of the plane that contains the point   (1, 2, -1) with normal vector i – j.
Given vector ? = 2? + 3?, ? = −5? + ? + ?. Find the...
Given vector ? = 2? + 3?, ? = −5? + ? + ?. Find the followings. a) The projection of u onto v b) A vector that is orthogonal to both u and v
(a) Find the volume of the parallelepiped determined by the vectors a =< 2, −1, 3...
(a) Find the volume of the parallelepiped determined by the vectors a =< 2, −1, 3 >, b =< −3, 0, 1 >, c =< 2, 4, 1 >. (b) Find an equation of the plane that passes through the point (2, 4, −3) and is perpendicular to the planes 3x + 2y − z = 1 and x − 2y + 3z = 4.
#2. For the matrix A =   1 2 1 2 3 7 4 7...
#2. For the matrix A =   1 2 1 2 3 7 4 7 9   find the following. (a) The null space N (A) and a basis for N (A). (b) The range space R(AT ) and a basis for R(AT ) . #3. Consider the vectors −→x =   k − 6 2k 1   and −→y =   2k 3 4  . Find the number k such that the vectors...
Let A be a given (3 × 3) matrix, and consider the equation Ax = c,...
Let A be a given (3 × 3) matrix, and consider the equation Ax = c, with c = [1 0 − 1 ]T . Suppose that the two vectors x1 =[ 1 2 3]T and x2 =[ 3 2 1] T are solutions to the above equation. (a) Find a vector v in N (A). (b) Using the result in part (a), find another solution to the equation Ax = c. (c) With the given information, what are the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT