Question

A tank with a capacity of 1600 L is full of a mixture of water and...

A tank with a capacity of 1600 L is full of a mixture of water and chlorine with a concentration of 0.0125 g of chlorine per liter. In order to reduce the concentration of chlorine, fresh water is pumped into the tank at a rate of 16 L/s. The mixture is kept stirred and is pumped out at a rate of 40 L/s. Find the amount of chlorine in the tank as a function of time. (Let y be the amount of chlorine in grams and t be the time in seconds.)

________________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank initially contains 120 L of pure water. A mixture containing a concentration of 9...
A tank initially contains 120 L of pure water. A mixture containing a concentration of 9 g/L of salt enters the tank at a rate of 3 L/min, and the well-stirred mixture leaves the tank at the same rate. Determine the differential equation for the rate of change of the amount of salt in the tank at any time t and solve it (using the fact that the initial amount of salt in the tank is 0g).
a tank is filled half-full of a mixture 100 liters of water and 50kg of salt....
a tank is filled half-full of a mixture 100 liters of water and 50kg of salt. water runs in to the tank at a rate of 10 liters per second. the mixture is kept uniform by stirring, runs out at the same rate. what is the amount of salt inside the tank after 10 seconds? from the solution of the formulated differential equation, sketch the amount of salt as time approaches infinity.
A 1000-liter (L) tank contains 500L of water with a salt concentration of 10g/L. Water with...
A 1000-liter (L) tank contains 500L of water with a salt concentration of 10g/L. Water with a salt concentration of 50g/L flows into the tank at a rate of R(in)=80L/minutes (min). The fluid mixes instantaneously and is pumped out at a specified rate R(out)=40L/min. Let y(t) denote the quantity of salt in the tank at time t. Set up and solve the differential equation for y(t).
Consider a 400-gallon capacity tank of water that contains 200 gallons of water in which 10...
Consider a 400-gallon capacity tank of water that contains 200 gallons of water in which 10 pounds of salt are dissolved. Suppose that water with a salt concentration of 2 pounds per gallon enters the tank at a rate of 6 gallons per minute, is well-stirred, and the mixture leaves the tank at 9 gallons per minute. Set up and solve the initial value problem to get the amount of salt as a function of time. Use this function to...
A 24 gallon tank is filled with pure water. Water which has a concentration of 6g...
A 24 gallon tank is filled with pure water. Water which has a concentration of 6g of salt per gallon flows into the tank at a rate of 2 gallons/min, and the mixture is stirred to a uniform concentration. Water also leaks from the tank at the same rate, 2 gallons/min. Find a differential equation describing the rate of change of salt in the tank. Hint: The concentration of salt in the tank is S(t)/24, where S(t) is the total...
Consider a 2500-gallon capacity tank of water that contains 100 gallons of water in which 10...
Consider a 2500-gallon capacity tank of water that contains 100 gallons of water in which 10 pounds of salt are dissolved. Suppose that water with a salt concentration of 2 pounds per gallon enters the tank at a rate of 6 gallons per minute, is well-stirred, and the mixture leaves the tank at 5 gallons per minute. (a) Set up and solve the initial value problem to find the amount of salt in the tank as a function of time....
Consider a large tank holding 1000 L of pure water into which a brine solution of...
Consider a large tank holding 1000 L of pure water into which a brine solution of salt begins to flow at a constant rate of 6 L/min. The solution inside the tank is kept well stirred and is flowing out of the tank at a rate of 4 L/min. If the concentration of salt in the brine entering the tank is 0.3 kg/L, determine when the concentration of salt in the tank will reach 0.1 kg/L.
A children swimming pool initially contains 500 L of clean water. An inlet water stream containing...
A children swimming pool initially contains 500 L of clean water. An inlet water stream containing chlorine at a concentration of 4 mg/L is pumped into the pool at a rate of 12 L/hr. Assuming well-mixed condition, the water is pumped out at the rate of 10 L/hr. Create an equation for the mathematical model of the amount of chlorine in the pool as a function of time. Perform your own research on the acceptable chlorine concentration in a pool...
A tank initially contains 100 liters of water in which 50 grams of salt are dissolved....
A tank initially contains 100 liters of water in which 50 grams of salt are dissolved. A salt solution containing 10 grams of salt per liter is pumped into the tank at the rate of 4 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 6 liters per minute. Let t denote time (in minutes), and let Q denote the amount of salt in the tank at time t (in grams). Write...
A tank initially contains 3 L of pure water. A solution containing 3 g/L of salt...
A tank initially contains 3 L of pure water. A solution containing 3 g/L of salt is pumped into the tank at a rate of 2 L/min, and the contents of the tank are also pumped out at a rate of 2 L/min. Let y(t) be the amount of salt in the tank at time t. For a short time interval from time t0 to time t0 + h, approximate the change y(t0 + h) − y(t0) in the amount...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT