Question

A 1000-liter (L) tank contains 500L of water with a salt concentration of 10g/L. Water with...

A 1000-liter (L) tank contains 500L of water with a salt concentration of 10g/L. Water with a salt concentration of 50g/L flows into the tank at a rate of R(in)=80L/minutes (min). The fluid mixes instantaneously and is pumped out at a specified rate R(out)=40L/min. Let y(t) denote the quantity of salt in the tank at time t. Set up and solve the differential equation for y(t).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per...
A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of 5 L/min. Brine that contains 0.04 kg of salt per liter of water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15 L/min. (a) How much salt is in the tank after t minutes? y=
A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per...
A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of 5 L/min. Brine that contains 0.04 kg of salt per liter of water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15 L/min. (a) How much salt is in the tank after t minutes? (b) How much salt...
A Tank contains 100g of salt and 500L of water. Water that contains (5/2)g of salt...
A Tank contains 100g of salt and 500L of water. Water that contains (5/2)g of salt per liter enters the tank at a rate of 2 (L/min). The solution is mixed and drains from the tank at a rate of 3 (L/min). Let y be the number of g of salt in the tank after t minutes. a). What is the differential equation for this scenario? and b). what is the particular solution given y(0) = 100
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution...
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution is pumped into the tank at a rate of 4 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 4 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal.
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution...
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution is pumped into the tank at a rate of 2 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 2 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal.
A tank contains 80 kg of salt and 1000 L of water. Pure water enters a...
A tank contains 80 kg of salt and 1000 L of water. Pure water enters a tank at the rate 6 L/min. The solution is mixed and drains from the tank at the rate 3 L/min. Find the amount of salt in the tank after 2 hours. What is the concentration of salt in the solution in the tank as time approaches infinity?
A tank initially contains 3 L of pure water. A solution containing 3 g/L of salt...
A tank initially contains 3 L of pure water. A solution containing 3 g/L of salt is pumped into the tank at a rate of 2 L/min, and the contents of the tank are also pumped out at a rate of 2 L/min. Let y(t) be the amount of salt in the tank at time t. For a short time interval from time t0 to time t0 + h, approximate the change y(t0 + h) − y(t0) in the amount...
A tank contains 120 liters of fluid in which 50 grams of salt is dissolved. Brine...
A tank contains 120 liters of fluid in which 50 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 4 L/min; the well-mixed solution is pumped out at the same rate. Find the number A(t) of grams of salt in the tank at time t. A(t) = __________________
A tank contains 210 liters of fluid in which 20 grams of salt is dissolved. Brine...
A tank contains 210 liters of fluid in which 20 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 3 L/min; the well-mixed solution is pumped out at the same rate. Find the number A(t) of grams of salt in the tank at time t.
A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Brine...
A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 5 L/min; the well-mixed solution is pumped out at the same rate. Find the number A(t) of grams of salt in the tank at time t.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT