Question

A rectangular box with capacity 355cc is to be produced. The bottom and side of the...

A rectangular box with capacity 355cc is to be produced. The bottom and side of the container are to be made of material that costs 0.02 cents per cm^2, while the top of the container is made of material costing 0.03 cents per cm^2. Set up to find the dimensions that will minimize the cost of the container.

a.) Cost of top =

b.) Cost of bottom =

c.) Cost of side material =

d.) Total Cost of materials =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10 ft3 capacity rectangular box with open top is to be constructed so that the...
A 10 ft3 capacity rectangular box with open top is to be constructed so that the length of the base of the box will be twice as long as its width. The material for the bottom of the box costs 20 cents per square foot and the material for the sides of the box costs 10 cents per square foot. Find the dimensions of the least expensive box that can be constructed.
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
box with rectangular base to be constucted material cost $4 /in^2 for the side & $5/in^2...
box with rectangular base to be constucted material cost $4 /in^2 for the side & $5/in^2 for top and bottom. if box is to have 90in^3 and the length of its base is 2X width, what are dimensions of box that would minimize cost of construction?
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base...
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base of the box is made from a material costing 8 cents/in2. The front of the box must be decorated, and will cost 12 cents/in2. The remainder of the sides will cost 2 cents/in2. Find the dimensions that will minimize the cost of constructing this box. Front width: _______ in. Depth: ________ in. Height: ________ in.
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3...
A closed rectangular box is to contain 12 ft^3 . The top and bottom cost $3 per square foot while the sides cost $2 per square foot. Find the dimensions of the box that will minimize the total cost.
You have been asked to design a closed rectangular box that holds a volume of 25...
You have been asked to design a closed rectangular box that holds a volume of 25 cubic centimeters while minimizing the cost of materials, given that the material used for the top and bottom of the box cost 4 cents per square centimeter, and the material used for sides cost 9 cents per square centimeter. Find the dimensions of this box in terms of variables L, W, and H.
Suppose you want to build a hollow rectangular box with volume 2000 cm^3. If the material...
Suppose you want to build a hollow rectangular box with volume 2000 cm^3. If the material for the top costs $3/cm^2 and the material for the side and bottom faces cost $1/cm^2, what are the dimensions of the cheapest box? (Here, we ignore the thickness of the faces of the box.)
The volume of a square-based rectangular box is 252 dm^3. The construction cost of the bottom...
The volume of a square-based rectangular box is 252 dm^3. The construction cost of the bottom is $5.00 per dm^2. of the top is $2.00 per dm^2 and of the sides is $3.00 per dm^2. Find the dimensions that will minimize the cost if the side of the base must fall between 4 dm and 8 dm.
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT